Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
International Journal for Multiscale Computational Engineering
Импакт фактор: 1.016 5-летний Импакт фактор: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Печать: 1543-1649
ISSN Онлайн: 1940-4352

Выпуски:
Том 17, 2019 Том 16, 2018 Том 15, 2017 Том 14, 2016 Том 13, 2015 Том 12, 2014 Том 11, 2013 Том 10, 2012 Том 9, 2011 Том 8, 2010 Том 7, 2009 Том 6, 2008 Том 5, 2007 Том 4, 2006 Том 3, 2005 Том 2, 2004 Том 1, 2003

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.v4.i5-6.70
pages 663-692

Microstructure-Based Multiscale Constitutive Modeling of γ — γ′ Nickel-Base Superalloys

A.-J. Wang
Onity, Inc., Norcross, GA
R. S. Kumar
ABAQUS, Inc., Providence, RI
M. M. Shenoy
G.W.W. School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405
David L. McDowell
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA; GWW School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA

Краткое описание

A hierarchical system of microstructure-based constitutive models for cyclic deformation and low cycle fatigue (LCF) behavior of two-phase nickel-base superalloys is developed and implemented. Both precipitate (γ′) and matrix (γ) phases with or without smaller dispersed precipitates are explicitly modeled using crystal viscoplasticity theory with dislocation density as an internal state variable. The constitutive models are capable of capturing most of the important features of the deformation behavior of Ni-base superalloys, namely, (i) anomalous yield stress behaviors with respect to temperature and tension-compression asymmetry of flow stress due to non-Schmid effects; (ii) crystallographic orientation dependence represented by the crystal plasticity model; (iii) effects of γ′ precipitate size and spacing on initial yield strength and work hardening; and (iv) effects of precipitate distribution and morphology on localized cyclic plastic shear strain. The physically based hardening laws are employed to evolve dislocation densities for both phases in each slip system with consideration of dislocation interaction mechanisms. This type of' microstructure-sensitive constitutive model is applicable to the study of the effects of variability of microstructure on variability of LCF and creep behaviors or properties. A combined bottom-up and top-down strategy is used to determine model parameters to support simulations at length scales ranging from approximately 100 nm up to hundreds of microns. Models for γ′ precipitates are calibrated using bulk Ni3Al single-crystal data. The γ — γ′ two-phase models are calibrated for several superalloys and strain histories, providing good agreement with experiments. The utility of such models in modeling behavior at several characteristic length scales is briefly discussed.


Articles with similar content:

Proposal of the concrete−GFR P interaction models
Composites: Mechanics, Computations, Applications: An International Journal, Vol.5, 2014, issue 4
Giosue Boscato, Salvatore Russo
3D Micromechanical Modeling of Particulate Composite Materials with Imperfect Interface
International Journal for Multiscale Computational Engineering, Vol.2, 2004, issue 1
X. B. Yu, S. A. Meguid, Z. Zhong
A Micropillar Compression Simulation by a Multiscale Plastic Model Based on 3-D Discrete Dislocation Dynamics
International Journal for Multiscale Computational Engineering, Vol.7, 2009, issue 3
X. M. Liu, Yuan Gao, Zhuo Zhuang, X. C. You, Z. L. Liu
Modeling the Particle Size and Interfacial Hardening Effects in Metal Matrix Composites with Dispersed Particles at Decreasing Microstructural Length Scales
International Journal for Multiscale Computational Engineering, Vol.7, 2009, issue 4
Rashid K. Abu Al-Rub
Multiscale Model for Damage Analysis in Fiber-Reinforced Composites with Interfacial Debonding
International Journal for Multiscale Computational Engineering, Vol.2, 2004, issue 4
Somnath Ghosh, Prasanna Raghavan