Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
International Journal for Multiscale Computational Engineering
Импакт фактор: 1.016 5-летний Импакт фактор: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Печать: 1543-1649
ISSN Онлайн: 1940-4352

Выпуски:
Том 17, 2019 Том 16, 2018 Том 15, 2017 Том 14, 2016 Том 13, 2015 Том 12, 2014 Том 11, 2013 Том 10, 2012 Том 9, 2011 Том 8, 2010 Том 7, 2009 Том 6, 2008 Том 5, 2007 Том 4, 2006 Том 3, 2005 Том 2, 2004 Том 1, 2003

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.v4.i5-6.30
pages 585-600

A Prototype Homogenization Model for Acoustics of Granular Materials

Robert P Gilbert
Alexander Panchenko
Department of Mathematics, Washington State University, Pullman, WA 99164, USA
Xuming Xie
Department of Mathematics, Morgan State University, Baltimore, MD, USA

Краткое описание

This paper introduces a homogenization approach to modeling acoustic vibrations of composite materials with internal friction. The model medium studied in the paper consists of a consolidated viscoelastic solid matrix with a large number of periodically arranged pores containing rigid solid particles. The particles are in frictional contact with the matrix. At the length scale of particles, the frictional forces are modeled initially by the Coulomb's law with normal compliance. These inequality-type conditions are approximated by nonlinear equations. The resulting microscale problem is averaged using formal two-scale homogenization. The effective acoustic equations are, in general, nonlinear and history dependent, and contain both effective stress and the effective drag force. The constitutive equations for the effective quantities are obtained explicitly for three different approximate models of contact conditions.


Articles with similar content:

ESSENTIAL FEATURES OF FINE SCALE BOUNDARY CONDITIONS FOR SECOND GRADIENT MULTISCALE HOMOGENIZATION OF STATISTICAL VOLUME ELEMENTS
International Journal for Multiscale Computational Engineering, Vol.10, 2012, issue 5
David L. McDowell, Darby Luscher, Curt Bronkhorst
NON-LOCAL COMPUTATIONAL HOMOGENIZATION OF PERIODIC MASONRY
International Journal for Multiscale Computational Engineering, Vol.9, 2011, issue 5
Andrea Bacigalupo , Luigi Gambarotta
ELASTIC AND ELECTRICAL BEHAVIOR OF SOME RANDOMMULTISCALE HIGHLY-CONTRASTED COMPOSITES
International Journal for Multiscale Computational Engineering, Vol.9, 2011, issue 3
Francois Willot, Dominique Jeulin
Nonlinear viscoelastic analysis of statistically homogeneous random composites
International Journal for Multiscale Computational Engineering, Vol.2, 2004, issue 4
Michal Sejnoha, R. Valenta, Jan Zeman
Multiscale Total Lagrangian Formulation for Modeling Dislocation-Induced Plastic Deformation in Polycrystalline Materials
International Journal for Multiscale Computational Engineering, Vol.4, 2006, issue 1
Jiun-Shyan Chen, Nasr M. Ghoniem, Xinwei Zhang, Shafigh Mehraeen