Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
International Journal for Multiscale Computational Engineering
Импакт фактор: 1.016 5-летний Импакт фактор: 1.194 SJR: 0.452 SNIP: 0.68 CiteScore™: 1.18

ISSN Печать: 1543-1649
ISSN Онлайн: 1940-4352

Том 17, 2019 Том 16, 2018 Том 15, 2017 Том 14, 2016 Том 13, 2015 Том 12, 2014 Том 11, 2013 Том 10, 2012 Том 9, 2011 Том 8, 2010 Том 7, 2009 Том 6, 2008 Том 5, 2007 Том 4, 2006 Том 3, 2005 Том 2, 2004 Том 1, 2003

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.v7.i3.30
pages 195-204

A Study on the Collapse of Self-Similar Hardening Behavior of Nanostructures

Yong Gan
Department of Civil and Environmental Engineering, University of Missouri-Columbia, USA
Zhen Chen
Department of Civil & Environmental Engineering, University of Missouri, USA; Department of Engineering Mechanics, Faculty of Vehicle Engineering and Mechanics, Dalian University of Technology, Dalian 116024, P. R. China

Краткое описание

The rate-dependent tensile responses of nanofilms and nanowires made of tungsten, copper, and gold, respectively, are investigated with the molecular dynamics method to understand the collapse of self-similar hardening (smaller is stronger) behavior of nanostructures. It is shown that such collapse is strongly dependent on material properties and specimen geometry. It is also demonstrated that the critical length scale characterizing the collapse of self-similar hardening decreases with the increase of strain rate. The plastic deformations of tungsten nanostructures and copper nanowires are in agreement with the dislocation starvation model for the self-similar hardening behavior, while the observed deformations of gold specimens and copper nanfilms imply that the phenomenon of "smaller is softer" is mainly due to the surface effects.

Ключевые слова: size effect, nanostructure, plasticity, molecular dynamics


  1. Horstemeyer, M. F., Baskes, M. I., and Plimpton, S. J., Length scale and time scale effects on the plastic flow of fcc metals. DOI: 10.1016/S1359-6454(01)00149-5

  2. Yu, D. Y. W., and Spaepena, F., The yield strength of thin copper films on Kapton. DOI: 10.1063/1.1644634

  3. Espinosa, H. D., and Prorok, B. C., Size effects on the mechanical behavior of gold thin films. DOI: 10.1023/A:1026321404286

  4. Espinosa, H. D., Berbenni, S., Panico, M., and Schwarz, K. W, An interpretation of size-scale plasticity in geometrically confined systems.

  5. Wu, B., Heidelberg, A., and Boland, J. J., Mechanical properties of ultrahigh-strength gold nanowires. DOI: 10.1038/nmat1403

  6. Greer, J. R., Oliver, W. C., and Nix, W. D., Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. DOI: 10.1016/j.actamat.2004.12.031

  7. Wu, H. A., Molecular dynamics study on mechanics of metal nanowire. DOI: 10.1016/j.mechrescom.2005.05.012

  8. Greer, J. R., and Nix, W. D., Nanoscale gold pillars strengthened through dislocation starvation. DOI: 10.1103/PhysRevB.73.245410

  9. Yang, Z., and Zhao, Y.-P., Size-dependent elastic properties of Ni nanofilms by molecular dynamics simulation. DOI: 10.1142/S0218625X07010032

  10. Marian, J., and Knap, J., Breakdown of selfsimilar hardening behavior in Au nanopillar microplasticity. DOI: 10.1615/IntJMultCompEng.v5.i3-4.100

  11. Daw, M. S., and Baskes, M. I., Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. DOI: 10.1103/PhysRevB.29.6443

  12. Zhou, X. W., Wadley, H. N. G., Johnson, R. A., Larson, D. J., Tabat, N., Cerezo, A., Petford- Long, A. K., Smith, G. D. W., Clifton, P. H., Martens, R. L., and Kelly, T. F., Atomic scale structure of sputtered metal multilayers. DOI: 10.1016/S1359-6454(01)00287-7

  13. Zhou, M., A new look at the atomic level virial stress: On continuum-molecular system equivalence. DOI: 10.1098/rspa.2003.1127

  14. Li, X., and Weinan, E., Multiscale modeling of the dynamics of solids at finite temperature. DOI: 10.1016/j.jmps.2005.01.008

  15. Chen, W., and Fish, J., A mathematical homogenization perspective of virial stress. DOI: 10.1002/nme.1622

  16. Subramaniyan, A. K., and Sun, C. T., Continuum interpretation of virial stress in molecular simulations. DOI: 10.1016/j.ijsolstr.2008.03.016

  17. Tsai, D. H., The virial theorem and stress calculation in molecular dynamics. DOI: 10.1063/1.437577

  18. Allen, M., and Tildesley, D., Computer Simulation of Liquids.

  19. Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A., and Haak, J. R., Molecular dynamics with coupling to an external bath. DOI: 10.1063/1.448118

  20. Hoover, W. G., Canonical dynamics: Equilibrium phase-space distributions. DOI: 10.1103/PhysRevA.31.1695

  21. Ikeda, H., Qi, Y., Ç agin, T., Samwer, C., Johnson, W. L., and Goddard, W. A., Strain rate induced amorphization in metallic nanowires. DOI: 10.1103/PhysRevLett.82.2900

  22. Koh, S. J. A., Lee, H. P., Lu, C., and Cheng, Q. H., Molecular dynamics simulation of a solid platinum nanowire under uniaxial tensile strain: Temperature and strain-rate effects. DOI: 10.1103/PhysRevB.72.085414

  23. Hommel, M., and Kraft, O., Deformation behavior of thin copper films on deformable substrates. DOI: 10.1016/S1359-6454(01)00293-2

  24. Nix, W. D., and Gao, H., Indentation size effects in crystalline materials: A law for strain gradient plasticity. DOI: 10.1016/S0022-5096(97)00086-0

  25. Gao, H., Huang, Y., Nix, W. D., and Hutchinson, J. W., Mechanism-based strain gradient plasticity—I. Theory. DOI: 10.1016/S0022-5096(98)00103-3

  26. Huang, Y., Gao, H., Nix, W. D., and Hutchinson, J. W., Mechanism-based strain gradient plasticity—II. Analysis. DOI: 10.1016/S0022-5096(99)00022-8

  27. Fish, J., and Chen, W., Space-time multiscale model for wave propagation in heterogeneous media. DOI: 10.1016/j.cma.2004.05.006

  28. Chen, W., and Fish, J., A generalized spacetime mathematical homogenization theory for bridging atomistic and continuum scales. DOI: 10.1002/nme.1630

  29. Plimpton, S. J., Fast parallel algorithms for short-range molecular dynamics. DOI: 10.1006/jcph.1995.1039

  30. Humphrey, W., Dalke, A., and Schulten, K., VMD—visual molecular dynamics. DOI: 10.1016/0263-7855(96)00018-5

Articles with similar content:

Modeling the Particle Size and Interfacial Hardening Effects in Metal Matrix Composites with Dispersed Particles at Decreasing Microstructural Length Scales
International Journal for Multiscale Computational Engineering, Vol.7, 2009, issue 4
Rashid K. Abu Al-Rub
International Journal for Multiscale Computational Engineering, Vol.9, 2011, issue 6
Stewart A. Silling
Calibration of Nanocrystal Grain Boundary Model Based on Polycrystal Plasticity Using Molecular Dynamics Simulations
International Journal for Multiscale Computational Engineering, Vol.8, 2010, issue 5
Sangmin Lee, Veera Sundararaghavan
Progressive Interface Failure under Shear Stresses Based on a Two-Dimensional Model of Decohesion
International Journal for Multiscale Computational Engineering, Vol.5, 2007, issue 2
Francesca Campi, Ilaria Monetto
Size of a Representative Volume Element in a Second-Order Computational Homogenization Framework
International Journal for Multiscale Computational Engineering, Vol.2, 2004, issue 4
Marc Geers, W. A. M. Brekelmans, Varvara G. Kouznetsova