Доступ предоставлен для: Guest
International Journal for Multiscale Computational Engineering

Выходит 6 номеров в год

ISSN Печать: 1543-1649

ISSN Онлайн: 1940-4352

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 2.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00034 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.46 SJR: 0.333 SNIP: 0.606 CiteScore™:: 3.1 H-Index: 31

Indexed in

Tailoring Crystallinity and Nanomechanical Properties of Clay Polymer Nanocomposites: A Molecular Dynamics Study

Том 8, Выпуск 6, 2010, pp. 561-584
DOI: 10.1615/IntJMultCompEng.v8.i6.20
Get accessGet access

Краткое описание

Polymer clay nanocomposites (PCNs) synthesized using different organic modifiers show enhanced nanomechanical properties and difference in percentage crystallinity of polymer in the PCN. It appears that organic modifiers have an influence on the nanomechanical properties and crystallinity of PCNs. Tailoring crystallinity and nanomechanical properties of PCNs to required mechanical behavior of PCN is a promising technology. In addition, this is essential for robust multiscale modeling of nanocomposites through a hierarchical modeling approach, wherein nanomechanical behavior from experiments and molecular simulations are incorporated into finite element models. To evaluate the influence of molecular structure of organic modifiers on the crystallinity and nanomechanical properties of PCN, five organic modifiers have been selected in this study in such a way that either they have identical end functional groups but different backbone chain lengths or identical backbone chain length with different functional groups. The PCNs synthesized with the same polymer (polyamide 6) and clay (sodium montmorillonite) but different organic modifiers show significant difference in the crystallinity and nanomechanical properties. In this work molecular models of PCNs based on these organic modifiers have been built and interaction energies between different constituents of PCNs have been evaluated using molecular dynamics simulation. By comparing the interaction energies with experimental results, important insight is obtained regarding the crystallinity and nanomechanical properties of PCNs. It is observed that interactions between the polymer and the organic modifier are key to controlling the nanomechanical properties of PCNs, and by varying the backbone chain length of the organic modifiers, the nanomechanical properties and crystallinity of a particular polymer-based PCN can be tailored to a significant extent. Also by changing the functional groups of modifiers, the crystallinity and nanomechanical properties of PCNs can be altered.

ЛИТЕРАТУРА
  1. Besler, B. H., Merz, K. M., and Kollman, P. A., Atomic charges derived from semiempirical methods. DOI: 10.1002/jcc.540110404

  2. Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S., and Karplus, M., CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. DOI: 10.1002/jcc.540040211

  3. Dionne, P. J., Ozisik, R., and Picu, C. R., Structure and dynamics of polyethelene nanocomposites. DOI: 10.1021/ma051037c

  4. Dionne, P. J., Picu, C. R., and Ozisik, R., Adsorption and desorption dynamics of linear polymer chains to spherical nanoparticles: A Monte Carlo investigation. DOI: 10.1021/ma0527754

  5. Feller, S. E., Zhang, Y., Pastor, R. W., and Brooks, B. R., Constant pressure molecular dynamics simulation: The Langevin piston method. DOI: 10.1063/1.470648

  6. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Zakrzerwski, V. G., Montgomery, J. A., Jr., Stratmann, R. E., Burant, J. C., Dapprich, S., Millam, J. M., Daniels, A. D., Kudin, K. N., Strain, M. C., Farkas, J., Tomasi, J., Barone, V., Cossi, M., Cammi, R., Mennucci, B., Pomelli, C., Adamo, C., Clifford, S., Ochterski, J., Petersson, G. A., Ayala, P. Y., Cui, Q., Morokuma, K., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Cioslowski, J., Ortiz, J. V., Baboul, A. G., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Gomperts, R., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Gonzalez, C., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M.W., Andres, J. L., Gonzalez, C., Head-Gordon, M., Replogle, E. S., and Pople, J. A., Gaussian 98.

  7. Gaudel-Siri, A., Brocorens, P., Siri, D., Gardebien, F., Bredas, J. L., and Lazzaroni, R., Molecular dynamics study of ϵ-caprolactone intercalated in wyoming sodium montmorillonite. DOI: 10.1021/la034491n

  8. Ginzburg, V. V., Singh, C., and Balazs, A. C., Theoretical phase diagrams of polymer/clay composites: The role of grafted organic modifiers. DOI: 10.1021/ma991324e

  9. Hsueh, H. B. and Chen, C. Y., Preparation and properties of LDHs/epoxy nanocomposites. DOI: 10.1016/S0032-3861(03)00579-2

  10. Humphrey, W., Dalke, A., and Schulten, K., VMD—Visual molecular dynamics. DOI: 10.1016/0263-7855(96)00018-5

  11. Kalé, L., Skeel, R., Bhandarkar, M., Brunner, R., Gursoy, A., Krawetz, N., Phillips, J., Shinozaki, A., Varadarajan, K., and Schulten, K., NAMD2: Greater scalability for parallel molecular dynamics. DOI: 10.1006/jcph.1999.6201

  12. Karasawa, N. and Goddard,W. A., Acceleration of convergence for lattice sums. DOI: 10.1021/j100358a012

  13. Katti, D., Schmidt, S., Ghosh, P., and Katti, K., Modeling the response of pyrophyllite interlayer to applied stress using steered molecular dynamics. DOI: 10.1346/CCMN.2005.0530207

  14. Katti, K. S., Sikdar, D., Katti, D. R., Ghosh, P., and Verma, D., Molecular interactions in intercalated organically modified clay and clay-polycaprolactam nanocomposites: Experiments and modeling. DOI: 10.1016/j.polymer.2005.11.055

  15. Ma, C. C. M., Kuo, C. T., Kuan, H. C., and Chiang, C. L., Effects of swelling agents on the crystallization behavior and mechanical properties of polyamide 6/clay nanocomposites. DOI: 10.1002/app.11897

  16. Martyna, G. J., Tobias, D. J., and Klein, M. L., Constant pressure molecular dynamics algorithms. DOI: 10.1063/1.467468

  17. Meneghetti, P. and Qutubuddin, S., Synthesis, thermal properties and applications of polymer-clay nanocomposites. DOI: 10.1016/j.tca.2006.01.017

  18. Mitsunaga, M., Ito, Y., Ray, S. S., Okamoto, M., and Hironaka, K., Intercalated polycarbonate/clay nanocomposites: Nanostructure control and foam processing. DOI: 10.1002/mame.200300097

  19. Okada, A., Kawasumi, M., Usuki, A., Kojima, Y., Kurauchi, T., and Kamigaito, O., Nylon 6-clay hybrid. DOI: 10.1557/PROC-171-45

  20. Qin, H., Zhang, S., Zhao, C., and Yang, M., Zero-order kinetics of the thermal degradation of polypropylene/clay nanocomposites. DOI: 10.1002/polb.20668

  21. Ray, S. S. and Okamoto, M., Polymer/layered silicate nanocomposites: A review from preparation to processing. DOI: 10.1016/j.progpolymsci.2003.08.002

  22. Sikdar, D., Katti, D. R., and Katti, K. S., A molecular model for ε-caprolactam based intercalated polymer clay nanocomposites: Integrating modeling and experiments. DOI: 10.1021/la060243q

  23. Sikdar, D., Katti, D. R., Katti, K. S., and Bhowmik, R., Insight into molecular interactions between constituents in polymer clay nanocomposites. DOI: 10.1016/j.polymer.2006.05.026

  24. Sikdar, D., Katti, D., Katti, K., and Mohanty, B., Effect of organic modifiers on dynamic and static nanomechanical properties and crystallinity of intercalated clay-polycaprolactam nanocomposites. DOI: 10.1002/app.26284

  25. Sikdar, D., Katti, D., and Katti, K., The role of interfacial interactions on the crystallinity and mechanical properties of clay polymer nanocomposites: A molecular dynamics study. DOI: 10.1002/app.27504

  26. Sikdar, D., Pradhan, S. M., Katti, D. R., Katti, K. S., and Mohanty, B., Altered phase model of polymer clay nanocomposites. DOI: 10.1021/la800583h

  27. Sikdar, D., Katti, K. S., and Katti, D. R., Molecular interactions alter clay and polymer structure in polymer clay nanocomposites.

  28. Sikdar, D., Katti, D., Katti, K., and Mohanty, B., Influence of backbone chain length and functional groups of organic modifiers on crystallinity and nanomechanical properties of intercalated clay-polycaprolactam nanocomposites. DOI: 10.1504/IJNT.2009.024641

  29. Singh, U. C. and Kollman, P. A., An approach to computing electrostatic charges for molecules. DOI: 10.1002/jcc.540050204

  30. Skipper, N. T., Sposito, G., and Chang, F. R., Monte Carlo simulation of interlayer molecular structure in swelling clay minerals, 1. Methodology. DOI: 10.1346/CCMN.1995.0430303

  31. Skipper, N. T., Sposito, G., and Chang, F. R., Monte Carlo Simulation of Interlayer Molecular Structure in Swelling Clay Minerals. 2. Monolayer Hydrates. DOI: 10.1346/CCMN.1995.0430304

  32. Teppen, B. J., Rasmussen, K., Bertsch, P. M., Miller, D. M., and Schafer, L., Molecular dynamics modeling of clay minerals, 1. Gibbsite, kaolinite, pyrophyllite, and beidellite. DOI: 10.1021/jp961577z

  33. Vaia, R. A. and Giannelis, E. P., Polymer melt intercalation in organically-modified layered silicates: Model predictions and experiment. DOI: 10.1021/ma9603488

  34. Vaia, R. A., Pinnavaia, T. J., and Beall, G. W., Polymer-Clay Nanocomposites. DOI: 10.5772/15657

  35. Zhang, J. and Wilkie, C. A., Preparation and flammability properties of polyethylene-clay nanocomposites. DOI: 10.1016/S0141-3910(02)00398-1

ЦИТИРОВАНО В
  1. Lambert J.-F., Bergaya F., Smectite–Polymer Nanocomposites, in Handbook of Clay Science, 5, 2013. Crossref

  2. Katti Dinesh R., Katti Kalpana S., Raviprasad M., Gu Chunju, Role of Polymer Interactions with Clays and Modifiers on Nanomechanical Properties and Crystallinity in Polymer Clay Nanocomposites, Journal of Nanomaterials, 2012, 2012. Crossref

  3. Dreyer Daniel R., Jarvis Karalee A., Ferreira Paulo J., Bielawski Christopher W., Graphite Oxide as a Dehydrative Polymerization Catalyst: A One-Step Synthesis of Carbon-Reinforced Poly(phenylene methylene) Composites, Macromolecules, 44, 19, 2011. Crossref

  4. Abdelrahman Magdy, Katti Dinesh R., Ghavibazoo Amir, Upadhyay Him Bandhu, Katti Kalpana S., Engineering Physical Properties of Asphalt Binders through Nanoclay–Asphalt Interactions, Journal of Materials in Civil Engineering, 26, 12, 2014. Crossref

Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции Цены и условия подписки Begell House Контакты Language English 中文 Русский Português German French Spain