Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
International Journal for Multiscale Computational Engineering
Импакт фактор: 1.016 5-летний Импакт фактор: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Печать: 1543-1649
ISSN Онлайн: 1940-4352

Выпуски:
Том 17, 2019 Том 16, 2018 Том 15, 2017 Том 14, 2016 Том 13, 2015 Том 12, 2014 Том 11, 2013 Том 10, 2012 Том 9, 2011 Том 8, 2010 Том 7, 2009 Том 6, 2008 Том 5, 2007 Том 4, 2006 Том 3, 2005 Том 2, 2004 Том 1, 2003

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.v8.i6.30
pages 585-595

Concrete as a Hierarchical Structural Composite Material

Weidong Wu
Research Associate, Department of Civil Engineering, University of Mississippi, University, MS 38677, USA
Ahmed Al-Ostaz
Associate Professor, Department of Civil Engineering, University of Mississippi, University, MS 38677, USA
Alexander H.-D. Cheng
Professor, Department of Civil Engineering, University of Mississippi, University, MS 38677, USA
Chung R. Song
Associate Professor, Department of Civil Engineering, University of Mississippi, University, MS 38677, USA

Краткое описание

A multiscale modeling methodology that relates the nanostructure of concrete to its micro and macro properties is presented. This work attempts to establish a framework for understanding the relations among chemical composition, microstructure morphology, and the macroscale mechanical properties of concrete constituents. The simulation is based on four levels of a hierarchal structural model, starting from the molecular dynamics simulation of hydrated cement solid nanoparticles (e.g., C{S{H, and calcium hydroxide), all the way up to concrete. To validate the theoretical model, a nondestructive testing technique, resonant ultrasound spectroscopy (RUS), is used to measure the elastic constants of hydrated cement paste. The results showed good agreement between theoretically predicted and experimentally measured properties.

ЛИТЕРАТУРА

  1. Aboudi, J., Micromechanical analysis of composites by the method of cells. DOI: 10.1115/1.3152428

  2. Aboudi, J., Micromechanical analysis of composites by the method of cells—Update. DOI: 10.1115/1.3101981

  3. Abudi, J., Mechanics of Composite Materials—A Unified Micromechanical Approach.

  4. Accelrys, Inc., Materials Studio 4.2 [software].

  5. Aligizaki, K. K., Pore structure of cement-based materials: Testing interpretation and requirements (modern concrete technology).

  6. Alkateb, H., Alzebdeh, K. I., and Al-Ostaz, A., Stochastic models for predicting the strength and crack propagation of random composites.

  7. Bentz, D. P., Garboczi, E. J., Jennings, H. M., and Quenard, D. A., Multi-scale digital-image-based modeling of cement-based materials. DOI: 10.1557/PROC-370-33

  8. Bernard, O., Ulm, F.-J., and Lemarchand, E., Multiscale micromechanics-hydration model for the early-age elastic properties of cement-based materials. DOI: 10.1016/S0008-8846(03)00039-5

  9. Constantinides, G. and Ulm, F.-J., The nanogranular nature of C-S-H. DOI: 10.1016/j.jmps.2006.06.003

  10. Dormieux, L. and Ulm, F.-J., Applied Micromechanics of Porous Materials. DOI: 10.1007/3-211-38046-9

  11. Dormieux, L., Kondo, D., and Ulm, F.-J., Microporomechanics. DOI: 10.1002/0470032006

  12. Feldman, R. F. and Sereda, P. J., A new model of hydrated cement and its practical implications.

  13. Feng, L. and Christian, M., Micromechanics model for the effective elastic properties of hardened cement pastes.

  14. Fish, J. and Shek, K., Multiscale analysis of composite materials and structures. DOI: 10.1016/S0266-3538(00)00048-8

  15. Fish, J. and Yu, Q., Computational mechanics of fatigue and life predictions for composite materials and structures. DOI: 10.1016/S0045-7825(02)00401-2

  16. Fish, J., Wu, W., and Yuan, Z., Eigen deformation-based homogenization of concrete.

  17. Gates, T. S., Odegard, G. M., Frankland, S. J. V., and Clancy, T. C., Computational materials: Multi-scale modeling and simulation of nanostructured materials. DOI: 10.1016/j.compscitech.2005.06.009

  18. Haecker, C.-J., Garboczi, E. J., Bullard, J. W., Bohn, R. B., Sun, Z., Shah, S. P., and Voigt, T., Modeling the linear elastic properties of Portland cement paste. DOI: 10.1016/j.cemconres.2005.05.001

  19. Hashin, Z., The elastic moduli of heterogeneous materials. DOI: 10.1115/1.3636446

  20. Helmuth, R. A. and Turk, D. H., Elastic moduli of hardened Portland cement and tricalci silicate paste: Effect of porosity.

  21. Jasiuk, I. M., Trabecular bone as a hierarchical material: Elasticity and fracture.

  22. Jennings, H. M., A model for the microstructure of calcium silicate hydrate in cement paste. DOI: 10.1016/S0008-8846(99)00209-4

  23. Jennings, H. M., Colloid model of C-S-H and implications to the problem of creep and shrinkage. DOI: 10.1007/BF02481627

  24. Jennings, H. M. and Tennis, P. D., Model for the developing microstructure in Portland cement pastes. DOI: 10.1111/j.1151-2916.1994.tb04565.x

  25. Kerner, E. H., The elastic and thermo-elastic properties of composite media. DOI: 10.1088/0370-1301/69/8/305

  26. Knudsen, F. P., Dependence of mechanical strength of brittle polycrystalline specimens on porosity and grain size. DOI: 10.1111/j.1151-2916.1959.tb13596.x

  27. Leisure, R. G. and Willis, F. A., Resonant ultrasound spectroscopy. DOI: 10.1088/0953-8984/9/28/002

  28. Li, A., Li, R., and Fish, J., Generalized mathematical homogenization: From theory to practice. DOI: 10.1016/j.cma.2007.12.002

  29. Maynard, J., Resonant ultrasound spectroscopy. DOI: 10.1063/1.881483

  30. Mehta, P. K., Concrete, Structure, Properties, and Msaterials.

  31. Migliori, A., Sarrao, J. L., Visscher,W. M., Bell, T. M., Lei, M., Fisk, Z., and Leisure, R. G., Resonant ultrasound spectroscopic techniques for measurement of the elastic moduli of solids. DOI: 10.1016/0921-4526(93)90048-B

  32. Migliori, A., Visscher, W. M., Brown, S. E., Fisk, Z., Cheong, S.-W., Alten, B., Ahrens, E. T., Kubat-Martin, K. A., Maynard, J. D., Huang, Y., Kirk, D. R., Gillis, K. A., Kim, H. K., and Chan, M. H. W., Elastic constants and specific-heat measurements on single crystals of La2CuO4. DOI: 10.1103/PhysRevB.41.2098

  33. NASA John H. Glenn Research Center, MAC/GMC computer software.

  34. Ostoja-Starzewski, M., Lattice models in micromechanics. DOI: 10.1115/1.1432990

  35. Powers, T. C., Physical properties of cement paste.

  36. Powers, T. C. and Brownyard, T. L., Studies of the physical properties of hardened Portland cement paste.

  37. Taylor, H. F. W., Proposed structure for calcium silicate hydrate gel. DOI: 10.1111/j.1151-2916.1986.tb07446.x

  38. Taylor, H. F. W., A method for predicting alkali ion concentration in cement pore solutions. DOI: 10.1680/adcr.1987.1.1.5

  39. Taylor, H. F. W., Nanostructure of C-S-H: Current status. DOI: 10.1016/1065-7355(93)90006-A

  40. Tennis, P. D. and Jennings, H. M., A model for two types of calcium silicate hydrate in the microstructure of Portland cement pastes. DOI: 10.1016/S0008-8846(00)00257-X

  41. Ulm, F.-J., Constantinides, G., and Heukamp, F. H., Is concrete a poromechanics material?—A multiscale investigation of poroelastic properties. DOI: 10.1007/BF02481626

  42. Velez, K., Maximilien, S., Damidot, D., Fantozzi, G., and Sorrebtino, F., Determination by nanoindentation of elastic modulus and hardness of pure constituents of Portland cement clinker. DOI: 10.1016/S0008-8846(00)00505-6

  43. Wu, W., Al-Ostaz, A., Cheng, A. H.-D., and Song, C. R., A molecular dynamics and microporomechanics study on the mechanical properties of major constituents of hydrated cement. DOI: 10.1016/j.compositesb.2010.06.005

  44. Wu, W., Al-Ostaz, A., Gladden, J., Cheng, A., and Li, G., Measurement of mechanical properties of hydtated cement paste using resonant ultrasound spectroscopy. DOI: 10.1520/JAI102657

  45. Yoshimura, H. N., Molisani, A. L., and Narita, N. E., Porosity dependence of elastic constants in aluminum nitride ceramics. DOI: 10.1590/S1516-14392007000200006

  46. Yuan, Z. and Fish, J., Hierarchical model reduction at multiple scales. DOI: 10.1002/nme.2554


Articles with similar content:

AN ATOMISTIC–CONTINUUM MULTISCALE METHOD FOR MODELING THE THERMOMECHANICAL BEHAVIOR OF HETEROGENEOUS NANOSTRUCTURES
International Journal for Multiscale Computational Engineering, Vol.16, 2018, issue 5
M. Jahanshahi, N. Jafarian, N. Heidarzadeh, Amir R. Khoei
INTERNAL STRESS ANALYSIS IN THIN METALLIC FILMS BY COMBINING CURVATURE AND X-RAY DIFFRACTION METHODS
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, Vol.2, 1998, issue 3
K.F. Badawi, V. Pelosin , Ph. Goudeau , V. Branger
Calibration of Nanocrystal Grain Boundary Model Based on Polycrystal Plasticity Using Molecular Dynamics Simulations
International Journal for Multiscale Computational Engineering, Vol.8, 2010, issue 5
Sangmin Lee, Veera Sundararaghavan
Microstructure-Based Multiscale Constitutive Modeling of γ — γ′ Nickel-Base Superalloys
International Journal for Multiscale Computational Engineering, Vol.4, 2006, issue 5-6
David L. McDowell, A.-J. Wang, M. M. Shenoy, R. S. Kumar
THE INFLUENCE OF SURFACE ROUGHNESS ON SCATTERING OF FREE-MOLECULAR FLOW BY SOLID BODIES
TsAGI Science Journal, Vol.47, 2016, issue 4
Sergei Borisovich Nesterov, Ramul'ya Amirovna Nezhmetdinova, Alexander Petrovich Nikiforov, Alexander Ivanovich Erofeev