Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
International Journal for Multiscale Computational Engineering
Импакт фактор: 1.016 5-летний Импакт фактор: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Печать: 1543-1649
ISSN Онлайн: 1940-4352

Выпуски:
Том 17, 2019 Том 16, 2018 Том 15, 2017 Том 14, 2016 Том 13, 2015 Том 12, 2014 Том 11, 2013 Том 10, 2012 Том 9, 2011 Том 8, 2010 Том 7, 2009 Том 6, 2008 Том 5, 2007 Том 4, 2006 Том 3, 2005 Том 2, 2004 Том 1, 2003

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.v6.i1.50
pages 53-63

A Fourier Spectral Solver for Confined Navier-Stokes Flow

G. H. Keetels
Department Phys., Eindhoven University of Technology, P.O. Box 513,5600 MB Eindhoven, The Netherlands
Herman J. H. Clercx
Department of Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands
G. J. F. van Heijst
Department of Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands

Краткое описание

No-slip boundaries have an important effect on forced and decaying two-dimensional turbulence due to their role as vorticity source. During intensive vortex-wall interactions high-amplitude vorticity filaments are produced. Most of these filaments roll up and form small-scale vortices that are advected into the interior by larger-scale vortices. From a computational point of view, it is a challenge to resolve the multiple temporal and spatial scales. Another challenge is to solve 2D turbulence in different geometries, e.g. square, triangle, circle, or ellipse. In this study we use a fast Fourier spectral technique to simulate the Navier-Stokes equations with no-slip boundary conditions. This is enforced by an immersed boundary technique called "volume penalization." The approach has been justified by analytical proofs of the convergence with respect to the penalization parameter. However, the solution of the penalized Navier-Stokes equations is not smooth on the surface of the penalized volume. Therefore, it is not a priori known whether it is possible to actually perform accurate fast Fourier spectral computations. Convergence checks are reported using a recently revived, and unexpectedly difficult, dipole-wall collision as a test case. It is found that Gibbs oscillations have a negligible effect on the flow evolution, also for 2D flows without the presence of reflection symmetry. Convergence results are reported of the angular momentum production by intensive flow-wall interaction.