Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
International Journal for Multiscale Computational Engineering
Импакт фактор: 1.016 5-летний Импакт фактор: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Печать: 1543-1649
ISSN Онлайн: 1940-4352

Выпуски:
Том 17, 2019 Том 16, 2018 Том 15, 2017 Том 14, 2016 Том 13, 2015 Том 12, 2014 Том 11, 2013 Том 10, 2012 Том 9, 2011 Том 8, 2010 Том 7, 2009 Том 6, 2008 Том 5, 2007 Том 4, 2006 Том 3, 2005 Том 2, 2004 Том 1, 2003

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.v4.i1.110
pages 169-182

Trans-scale Coupling in Multiscale Simulations

Feng Rong
LNM, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080, P. R. China
Haiying Wang
LNM, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080, P. R. China
Mengfen Xia
LNM, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080, P. R. China
Fujiu Ke
LNM, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080, P. R. China
Yilong Bai
LNM, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080, P. R. China

Краткое описание

Trans-scale coupling plays a significant role in multiscale problems. Since the mechanisms governing the trans-scale coupling vary from case to case, to identify and characterize the governing mechanisms of trans-scale coupling are the most crucial points in multiscale simulations. The failure of solid media is a typical multiscale process. This paper chooses two model problems, i.e., damage localization in spallation of an Al alloy and the catastrophe transition in a rock under quasi-static loading, to illustrate the trans-scale coupling in different phases of material failure. In the spallation process the governing mechanism of trans-scale effects is the coupling and competition between dynamics at different levels, which can be effectively characterized by two imposed Deborah numbers. In the catastrophe failure of heterogeneous media the governing mechanism of trans-scale coupling is the strong and sensitive coupling between the nonlinear dynamics and the disordered heterogeneity. In addition, the inverse cascade of damage evolution magnifies the effects of microstructures on failure and induces trans-scale sensitivity. Although the concept of critical sensitivity seems to be promising in catastrophe prediction, novel concepts and numerical schemes are still badly needed.


Articles with similar content:

Initiation of Systemic Autoimmunity and Sequence Specific Anti-DNA Autoantibodies
Critical Reviews™ in Immunology, Vol.19, 1999, issue 2
Brian A. Cocca, Samarendra N. Seal, Marko Z. Radio
Multiscale Modeling of Composite Materials by a Multifield Finite Element Approach
International Journal for Multiscale Computational Engineering, Vol.3, 2005, issue 4
Patrizia Trovalusci, V. Sansalone, F. Cleri
Comparisons of the Size of the Representative Volume Element in Elastic, Plastic, Thermoelastic, and Permeable Random Microstructures
International Journal for Multiscale Computational Engineering, Vol.5, 2007, issue 2
X. Du, Martin Ostoja-Starzewski, Z. F. Khisaeva, W. Li
A COARSE-GRAINED ATOMISTIC METHOD FOR 3D DYNAMIC FRACTURE SIMULATION
International Journal for Multiscale Computational Engineering, Vol.11, 2013, issue 3
Youping Chen, Qian Deng
DISCRETE ELEMENT MODEL FOR IN-PLANE LOADED VISCOELASTIC MASONRY
International Journal for Multiscale Computational Engineering, Vol.12, 2014, issue 2
Daniele Baraldi, Antonella Cecchi