Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Multiphase Science and Technology
SJR: 0.124 SNIP: 0.222 CiteScore™: 0.26

ISSN Печать: 0276-1459
ISSN Онлайн: 1943-6181

Выпуски:
Том 31, 2019 Том 30, 2018 Том 29, 2017 Том 28, 2016 Том 27, 2015 Том 26, 2014 Том 25, 2013 Том 24, 2012 Том 23, 2011 Том 22, 2010 Том 21, 2009 Том 20, 2008 Том 19, 2007 Том 18, 2006 Том 17, 2005 Том 16, 2004 Том 15, 2003 Том 14, 2002 Том 13, 2001 Том 12, 2000 Том 11, 1999 Том 10, 1998 Том 9, 1997 Том 8, 1994 Том 7, 1993 Том 6, 1992 Том 5, 1990 Том 4, 1989 Том 3, 1987 Том 2, 1986 Том 1, 1982

Multiphase Science and Technology

DOI: 10.1615/MultScienTechn.2019029714
pages 109-131

AN IMPROVED PRESSURE CALCULATION METHOD FOR SIMULATIONS OF GAS–LIQUID TWO-PHASE FLOWS ON UNSTRUCTURED MESHES

Kei Ito
Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2, Asashiro-Nishi, Kumatori-cho, Osaka 590-0494, Japan
Tomoaki Kunugi
Department of Nuclear Engineering, Kyoto University, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto, Japan
Toshiki Ezure
Oarai Research and Development Institute, Japan Atomic Energy Agency, 4002 Narita-cho, Oarai-machi, Ibaraki, 311–1393, Japan
Masaaki Tanaka
Oarai Research and Development Institute, Japan Atomic Energy Agency, 4002 Narita-cho, Oarai-machi, Ibaraki, 311–1393, Japan
Daisuke Ito
Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2, Asashiro-Nishi, Kumatori-cho, Osaka 590-0494, Japan
Yasushi Saito
Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2, Asashiro-Nishi, Kumatori-cho, Osaka 590-0494, Japan

Краткое описание

The authors have developed a numerical simulation code for gas–liquid two-phase flows with a high-precision volume-of-fluid–type interface-tracking method on unstructured meshes. In this paper, we propose an improved pressure calculation method in the vicinity of a gas–liquid interface based on the balanced-force algorithm, which was originally developed on structured meshes. To achieve accurate calculations for interfacial dynamics, we introduce the concept of external force potentials to take into account the physically appropriate mechanical balance between the pressure and the external forces, i.e., the surface tension and the gravitational force, at the gas–liquid interfaces. The validity of the improved pressure calculation method is checked by simulating a spherical bubble in stationary liquid and a rising bubble in liquid. As a result, the improved pressure calculation method succeeds in highly suppressing unphysical behavior, i.e., the spurious velocity, compared to the conventional simulation method. Therefore, the improved pressure calculation method on unstructured meshes is considered to work well in numerical simulations of gas–liquid two-phase flows.

ЛИТЕРАТУРА

  1. Amsden, A.A. and Harlow, F.H., The SMAC Method: A Numerical Technique for Calculating Incompressible Fluid Flows, Los Alamos National Laboratory, Los Alamos, NM, Tech. Rep. LA-4370, 1970.

  2. Ashgriz, N., Barbat, T., and Wang, G., A Computational Lagrangian–Eulerian Advection Remap for Free Surface Flows, Int. J. Numer. Methods Fluids, vol. 44, pp. 1–32, 2004.

  3. Aulisa, E., Manservisi, S., and Scardovelli, R., A Surface Marker Algorithm Coupled to an Area-Preserving Marker Redistribution Method for Three-Dimensional Interface Tracking, J. Comput. Phys., vol. 197, pp. 555–584, 2004.

  4. Aulisa, E., Manservisi, S., Scardovelli, R., and Zaleski, S., Interface Reconstruction with Least-Square Fit and Split Advection in Three-Dimensional Cartesian Geometry, J. Comput. Phys., vol. 225, pp. 2301– 2319, 2007.

  5. Bhaga, D. andWeber, M.E., Bubbles in Viscous Liquid: Shapes,Wakes and Velocities, J. Fluid Mech., vol. 105, pp. 61–85, 1981.

  6. Brackbill, J., A Continuum Method for Modeling Surface Tension, J. Comput. Phys., vol. 100, pp. 335–354, 1992.

  7. Chorin, A.J., Flame Advection and Propagation Algorithms, J. Comput. Phys., vol. 35, pp. 1–11, 1980.

  8. Cummins, S., Francois, M.M., and Kothe, D.B., Estimating Curvature from Volume Fractions, Comput. Struct., vol. 83, pp. 425–434, 2005.

  9. Debar, R., A Method in Two-D Eulerian Hydrodynamics, Lawrence Livermore National Laboratory, Livermore, CA, Tech. Rep. UCID-19683, 1974.

  10. Eguchi, Y., Yamamoto, K., Funada, T., Tanaka, N., Moriya, S., Tanimoto, K., Ogura, K., Suzuki, K., and Maekawa, I., Gas Entrainment in the IHX of Top-Entry Loop-Type LMFBR, Nucl. Eng. Des., vol. 146, pp. 373–381, 1984.

  11. Ezure, T., Kumura, N., Hayashi, K., and Kamide, H., Transient Behavior of Gas Entrainment Caused by Surface Vortex, Heat Transf. Eng., vol. 29, pp. 659–666, 2008.

  12. Francois, M.M., Cummins, S.J., Dendy, E.D., Kothe, D.B., Sjicilian, J.M., and Williams, M.W., A Balanced Force Algorithm for Continuous and Sharp Interfacial Surface Tension Models within a Volume Tracking Framework, J. Comput. Phys., vol. 213, pp. 141–173, 2006.

  13. GAMBIT, GAMBIT 2.2 User’s Guide, Fluent, Inc., 2004.

  14. Grace, J.R., Shapes and Velocities of Bubbles Rising in Infinite Liquid, Trans. Inst. Chem. Eng., vol. 51, pp. 116–120, 1973.

  15. Harvie, D.J.E., Davidson, M.R., and Rudman, M., An Analysis of Parasitic Current Generation in Volume of Fluid Simulations, ANZIAM J., vol. 46, pp. C133–C149, 2005.

  16. Harvie, D.J.E. and Fletcher, D.F., A New Volume of Fluid Advection Algorithm: The Stream Scheme, J. Comput. Phys., vol. 162, pp. 1–32, 2000.

  17. Harvie, D.J.E. and Fletcher, D.F., A New Volume of Fluid Advection Algorithm: The Defined Donating Scheme, Int. J. Numer. Methods Fluids, vol. 35, pp. 151–172, 2001.

  18. Herrmann, N., A Balanced Force Refined Level Set Grid Method for Two-Phase Flows on Unstructured Flow Solver Grids, J. Comput. Phys., vol. 227, pp. 2674–2706, 2008.

  19. Hirt, C.W. and Nichols, D.B., Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries, J. Comput. Phys., vol. 39 pp. 201–205, 1981.

  20. Hua, J. and Lou, J., Numerical Simulation of Bubble Rising in Viscous Liquid, J. Comput. Phys., vol. 222, pp. 769–795, 2007.

  21. Issa, R.I., Solution of the Implicitly Discretized Fluid Flow Equations by Operator-Splitting, J. Comput. Phys., vol. 62, pp. 40–65, 1986.

  22. Ito, K. and Kunugi, T., Appropriate Formulations for Velocity and Pressure Calculations at Gas–Liquid Interface with Collocated Variable Arrangement, J. Fluid Sci. Technol., vol. 4, pp. 711–721, 2009.

  23. Ito, K., Kunugi, T., and Ohshima, H., A High-Precision Unstructured Adaptive Mesh Technique for Gas– Liquid Two-Phase Flows, Int. J. Numer. Methods Fluids, vol. 67, pp. 1571–1589, 2011.

  24. Ito, K., Kunugi, T., Ohshima, H., and Kawamura, T., A Volume-Conservative PLIC Algorithm on Three- Dimensional Fully Unstructured Meshes, Comput. Fluids, vol. 88, pp. 250–261, 2013.

  25. Kim, S.E., Makarov, B., and Caraeni, D., A Multi-Dimensional Linear Reconstruction Scheme for Arbitrary Unstructured Grids, Proc. of 16th AIAA Computational Fluid Dynamics Conference, Orlando, FL, June 23–26, 2003.

  26. Kimura, N., Hayashi, K., Igarashi, M., Kamide, H., Itoh, M., and Sekine, T., Experimental Study on Flow Optimization in Upper Plenum of Reactor Vessel for a Compact Sodium Cooled Fast Reactor, Nucl. Technol., vol. 152, pp. 210–222, 2005.

  27. Koshizuka, S. and Oka, Y., Moving-Particle Semi-Implicit Method for Fragmentation of Incompressible Fluid, Nucl. Sci. Eng., vol. 123, pp. 421–434, 1996.

  28. Kunugi, T., MARS for Multiphase Calculation, Comput. Fluid Dyn. J., vol. 19, pp. 563–571, 2001.

  29. Kunugi, T., Ezure, T., Sakai, T., Ito, K., and Kawara, Z., Numerical Study on Onset of Gas Entrainment from Free Surface, in Proc. of AIChE Annual Meeting, November 16–20, San Francisco, CA, 2003.

  30. Lopez, J., Hernandez, J., Gomez, P., and Faura, F., A Volume of Fluid Method based on Multidimensional Advection and Spline Interface Reconstruction, J. Comput. Phys., vol. 195, pp. 718–742, 2004.

  31. Lopez, J., Hernandez, J., Gomez, P., and Faura, F., An Improved PLIC-VOF Method for Tracking Thin Fluid Structures in Incompressible Two-Phase Flows, J. Comput. Phys., vol. 208, pp. 51–74, 2005.

  32. Meier, M., Yadigaroglu, G., and Smith, B.L., A Novel Technique for Including Surface Tension in PLICVOF Methods, Eur. J. Mech. B/Fluids, vol. 21, pp. 61–73, 2002.

  33. Mencinger, J. and Zun, I., On the Finite Volume Discretization of Discontinuous Body Force Field on Collocated Grid: Application to VOF Method, J. Comput. Phys., vol. 221, pp. 524–538, 2007.

  34. Mosso, S.J., Swartz, B.K., Kothe, D.B., and Clancy, S.P., Recent Enhancements of Volume Tracking Algorithms for Irregular Grids, Los Alamos National Laboratory, Los Alamos, NM, Tech. Rep. LA-CP-96- 227, 1996.

  35. Muradoglu, M. and Tryggvason, G., A Front-Tracking Method for Computation of Interfacial Flows with Soluble Surfactants, J. Comput. Phys., vol. 227, pp. 2238–2262, 2008.

  36. Muzaferija, P.A., Adaptive Finite Volume Method for Flow Predictions using Unstructured Meshes and Multigrid Approach, PhD, University of London, London, UK, 1994.

  37. Noh, W.F. and Woodward, P.R., SLIC (Simple Linear Interface Calculation), in Lecture Notes in Physics, A.I. van der Vooren and P.J. Zandbergen, Eds., vol. 59, New York: Springer-Verlag, pp. 330–340, 1976.

  38. Osher, S. and Sethian, J.A., Fronts Propagating with Curvature-Dependent Speed: Algorithms based on Hamilton–Jacobi Formulations, J. Comput. Phys., vol. 79, pp. 12–49, 1988.

  39. Patankar, S.V., Numerical Heat Transfer and Fluid Flow, New York: McGraw-Hill, 1980.

  40. Pilliod, J.E. and Puckett, E.G., Second-Order Accurate Volume-of-Fluid Algorithms for Tracking Material Interfaces, J. Comput. Phys., vol. 199, pp. 464–502, 2004.

  41. Renardy, Y. and Renardy, M., PROST: A Parabolic Reconstruction of Surface Tension of the Volume-of- Fluid Method, J. Comput. Phys., vol. 183, pp. 400–421, 2002.

  42. Rhie, C.M. and Chow, W.L., Numerical Study of the Turbulent Flow past an Airfoil with Trailing Edge Separation, AIAA J., vol. 21, no. 11, pp. 1525–1532, 1983.

  43. Rider, W. and Kothe, D.B., Reconstructing Volume Tracking, J. Comput. Phys., vol. 141, pp. 112–152, 1998.

  44. Scardovelli, R. and Zaleski, S., Direct Numerical Simulation of Free-Surface and Interfacial Flow, Annu. Rev. Fluid Mech., vol. 31, pp. 567–603, 1999.

  45. Scardovelli, R. and Zaleski, S., Analytical Relations Connecting Linear Interface and Volume Functions in Rectangular Grids, J. Comput. Phys., vol. 164, pp. 228–237, 2000.

  46. Scardovelli, R. and Zaleski, S., Interface Reconstruction with Least-Square Fit and Split Eulerian– Lagrangian Advection, Int. J. Numer. Methods Fluids, vol. 41, pp. 251–274, 2003.

  47. Shahbazi, K., Paraschivoiu, M., and Mostaghimi, J., Second Order Accurate Volume Tracking based on Remapping for Triangular Meshes, J. Comput. Phys., vol. 188, pp. 100–122, 2003.

  48. Sussman, M.M., A Second Order Coupled Level Set and Volume of Fluid Method for Computing Growth and Collapse of Vapor Bubbles, J. Comput. Phys., vol. 187, pp. 110–136, 2003.

  49. Sussman, M. and Puckett, E.G., A Coupled Level Set and Volume of Fluid Method for Computing 3D and Axisymmetric Incompressible Two-Phase Flows, J. Comput. Phys., vol. 162, pp. 301–337, 2000.

  50. Sussman, M., Smereka, P., and Osher, S., A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flow, J. Comput. Phys., vol. 114, pp. 146–159, 1994.

  51. Takewaki, H. and Yabe, T., The Cubic-Interpolated Pseudo Particle (CIP) Method: Application to Nonlinear and Multi-Dimensional Hyperbolic Equations, J. Comput. Phys., vol. 70, pp. 355–372, 1987.

  52. Tanaka, N., Kunugi, T., Eguchi, Y., Nishimura, M., Ito, K., and Ohshima, H., On Numerical Methods for Steady Vortex Dimple Formulation without Gas Entrainment, in Proc. of 4th Japan–Korea Symposium on Nuclear Thermal Hydraulics and Safety, November 28–December 1, Sapporo, Japan, 2004.

  53. Tryggvason, G., Burner, B., Esmaeeli, A., Juric, D., Al-Rawahi, N., Tauber, W., Han, J., Nas, S., and Jan, Y.-J., A Front-Tracking Method for the Computations of Multiphase Flow, J. Comput. Phys., vol. 169, pp. 708–759, 2001.

  54. Unverdi, S.O. and Tryggvason, G., A Front-Tracking Method for Viscous, Incompressible Multi-Fluid Flows, J. Comput. Phys., vol. 100, pp. 25–37, 1992.

  55. Williams, M.W., Kothe, D.B., and Puckett, E.G., Accuracy and Convergence of Continuum Surface Tension Models, Los Alamos National Laboratory, Los Alamos, NM, Tech. Rep. LA-UR-98-2268, 1998.

  56. Yabe, T., Xiao, F., and Utsumi, T., The Constrained Interpolation Profile Method for Multiphase Analysis, J. Comput. Phys., vol. 169, pp. 556–593, 2001.

  57. Yang, X. and James, A.J., Analytic Relations for Reconstructing Piecewise Linear Interfaces in Triangular and Tetrahedral Grids, J. Comput. Phys., vol. 214, pp. 41–54, 2006.

  58. Yoon, H.Y., Koshizuka, S., and Oka, Y., Direct Calculation of Bubble Growth, Departure, and Rise in Nucleate Pool Boiling, Int. J. Multiphase Flow, vol. 27, pp. 277–298, 2001.

  59. Youngs, D.L., Time-Dependent Multi-Material Flow with Large Fluid Distortion, in Numerical Methods for Fluid Dynamics, K.W. Morton and M.J. Baines, Eds., New York: Academic Press, pp. 273–486, 1982.