Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes
ESCI SJR: 0.176 SNIP: 0.48 CiteScore™: 1.3

ISSN Печать: 1093-3611
ISSN Онлайн: 1940-4360

Выпуски:
Том 24, 2020 Том 23, 2019 Том 22, 2018 Том 21, 2017 Том 20, 2016 Том 19, 2015 Том 18, 2014 Том 17, 2013 Том 16, 2012 Том 15, 2011 Том 14, 2010 Том 13, 2009 Том 12, 2008 Том 11, 2007 Том 10, 2006 Том 9, 2005 Том 8, 2004 Том 7, 2003 Том 6, 2002 Том 5, 2001 Том 4, 2000 Том 3, 1999 Том 2, 1998 Том 1, 1997

High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes

DOI: 10.1615/HighTempMatProc.v6.i4.50
14 pages

PULSED PLASMA DEPOSITION OF OXIDE HARD COATINGS

R. Cremer
Lehrstuhl fur Theoretische Huttenkunde, RWTH Aachen, 52056 Aachen; and CemeCon AG, Adenauerstr. 20 В 1, 52146 Wurselen, Germany
K. Reichert
Lehrstuhl fur Theoretische Huttenkunde, RWTH Aachen, 52056 Aachen, Germany; now with: ALSTOM (Switzerland) Ltd, 5401 Baden, Switzerland
G. Erkens
CemeCon AG, Adenauerstr. 20 B 1,52146 Wurselen, Germany
Dieter Neuschutz
Lehrstuhl fur Theoretische Huttenkunde, Rheinisch-Westfalische Technische Hochschule (RWTH) Aachen, D-52056 Aachen, Germany

Краткое описание

In the last years a variety of plasma sources have been developed for film deposition by magnetron sputtering. In addition to RF- and DC-sputter sources, pulsed plasma sources are gaming increased attention in sputter technology. This interest is driven by the wish of depositing coatings with superior properties as compared to those deposited by conventional techniques. One prominent example of coatings that are significantly enhanced by the usage of pulsed sputter deposition is alumina. Although crystalline a-alumina can be deposited by thermal CVD at temperatures above 1000 °C for two decades, no process for the deposition of crystalline alumina at low temperatures is commercially available up to now.
In this paper, the results of a detailed study of the plasma parameters during bipolar pulsed magnetron sputtering and their effect on the properties of alumina hard coatings is reported. Langmuir type voltage measurements at the substrate position, optical emission spectroscopy as well as mass spectroscopy were used to monitor the effect of target poisoning on the reactive deposition of alumina. Those principal observations were connected to easily available process parameters like discharge voltage and oxygen partial pressure. Based on these measurements, the deposition of crystalline g-alumina with high hardness and good adhesion under technical conditions was achieved.


Articles with similar content:

PULSED PLASMA DEPOSITION OF OXIDE HARD COATINGS
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, Vol.14, 2010, issue 4
R. Cremer, Dieter Neuschutz, K. Reichert, G. Erkens
PULSED PLASMA DEPOSITION OF OXIDE HARD COATINGS
Progress in Plasma Processing of Materials, 2003, Vol.0, 2003, issue
Dieter Neuschutz, R. Cremer, K. Reichert, G. Erkens
Action of an Argon/Water Vapor Plasma Jet in the Sterilization of Silicone Contaminated with Candida albicans
Plasma Medicine, Vol.7, 2017, issue 3
Jhonatan Steffens Brandao Lima, Homero Santiago Maciel, Fernanda Ramos Figueira, Anelise C.O.C. Doria, Ligia Satiko Simomura, Sonia Khouri, Guilherme Torello Cassiano Redi, Rodrigo Savio Pessoa
SPECTRAL LINES IN PLASMA EMISSION AS APPLIED TO TEMPERATURE DISTRIBUTION MEASUREMENTS
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, Vol.6, 2002, issue 2
E. Ershov-Pavlov, K. Catsalap, K. L. Stepanov
SPECTRAL LINES IN PLASMA EMISSION AS APPLIED TO TEMPERATURE DISTRIBUTION MEASUREMENTS
Progress in Plasma Processing of Materials, 2003, Vol.0, 2003, issue
E. Ershov-Pavlov, K. Catsalap, K. L. Stepanov