Доступ предоставлен для: Guest
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes

Выходит 4 номеров в год

ISSN Печать: 1093-3611

ISSN Онлайн: 1940-4360

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 0.4 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.1 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00005 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.07 SJR: 0.198 SNIP: 0.48 CiteScore™:: 1.1 H-Index: 20

Indexed in

METHANE INJECTION THROUGH BORED GRAPHITE ELECTRODES INTO THERMAL ARCS OF EAFS FOR HIGHER POWER AND CLEANER STEELS

Том 15, Выпуск 3, 2011, pp. 193-204
DOI: 10.1615/HighTempMatProc.v15.i3.30
Get accessGet access

Краткое описание

Methane injection into the arcs of electric arc furnaces has been shown on pilot scale to lead to a remarkable arc voltage increase at constant arc current and arc length. The concept is to inject natural gas through bored graphite electrodes of DC EAFs in order to raise their productivity or to operate at constant power with shorter arcs and/or lower currents. Recent investigations have been concerned with heat transfer and metallurgical effects in a gas-tight 150-kg arc furnace operated with two AC plasma torches. A first test with bored graphite electrodes in this furnace confirmed the power increase observed during methane injection. The carburization slowly occurring when CH4 was injected could be avoided by adding minor amounts of CO2, decarburization by CO2 being fester than carburization by CH4. A slag layer decreased mass transfer rates without noticeably affecting heat transfer. Hydrogen was quickly absorbed by the steel melt but also rapidly desorbed after H4 injection was stopped. Bottom stirring improved heat dissipation in the melt and hydrogen removal. Manganese loss by evaporation was measured to investigate the influence of power increase and slag layers. From the results, an increase of 200 K was concluded for the melt surface temperature with Ar + 6% CH4 as compared to pure argon. Low nitrogen steelmaking in EAFs being a challenge to metallurgists, methane injection into the arcs proved to accelerate nitrogen removal considerably down to values below 20 ppm.

Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции Цены и условия подписки Begell House Контакты Language English 中文 Русский Português German French Spain