Доступ предоставлен для: Guest
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes

Выходит 4 номеров в год

ISSN Печать: 1093-3611

ISSN Онлайн: 1940-4360

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 0.4 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.1 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00005 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.07 SJR: 0.198 SNIP: 0.48 CiteScore™:: 1.1 H-Index: 20

Indexed in

COMPUTATIONAL STUDY OF HEAT TRANSFER CHARACTERISTICS OF SUPERCRITICAL METHANE FLOW IN THE COOLANT CHANNEL OF A ROCKET ENGINE

Том 22, Выпуск 2-3, 2018, pp. 141-159
DOI: 10.1615/HighTempMatProc.2018024725
Get accessGet access

Краткое описание

Liquid methane as a rocket fuel has promising prospects for deep space travel in the near future owing to its possible availability in alien planets. The major challenge however appears to be to properly address the issue of unusual heat transfer characteristics observed in the coolant channel at supercritical pressures, typically when the coolant fluid temperatures exceed a critical value. The current work systematically looks at the applicability of typical one-dimensional model to predict the heat transfer behavior in the coolant channel. The study then extends to a 2D numerical analysis and parametric investigation with an objective to study the effect of heat flux on heat transfer at a supercritical pressure. A 2D numerical analysis indicates that the one-dimensional approach is having limited applicability for heat transfer at a supercritical pressure. A systematic study has been carried out in the current work to investigate the onset of heat transfer deterioration in rocket engine coolant channels which involves asymmetric heating. The study indicates that heat transfer deterioration can be expected as the heat flux is increased and interestingly localized flow acceleration owing to sharp fall in density appears to have a prime influence on the heat transfer deterioration. An attempt has been made to look at some possible methods to offset the heat transfer deterioration, and the study reveals that providing higher surface roughness could be a simple possible means to overcome the heat transfer deterioration.

Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции Цены и условия подписки Begell House Контакты Language English 中文 Русский Português German French Spain