Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
International Journal for Uncertainty Quantification
Импакт фактор: 3.259 5-летний Импакт фактор: 2.547 SJR: 0.531 SNIP: 0.8 CiteScore™: 1.52

ISSN Печать: 2152-5080
ISSN Онлайн: 2152-5099

Свободный доступ

International Journal for Uncertainty Quantification

DOI: 10.1615/Int.J.UncertaintyQuantification.2016015915
pages 57-77

ROBUST UNCERTAINTY QUANTIFICATION USING PRECONDITIONED LEAST-SQUARES POLYNOMIAL APPROXIMATIONS WITH l1-REGULARIZATION

Jan Van Langenhove
Sorbonne Universités, UPMC Univ Paris 06, UMR 7190, Institut Jean le Rond d'Alembert, F-75005, Paris, France; CNRS, UMR 7190, Institut Jean le Rond d'Alembert, F-75005, Paris, France
D. Lucor
LIMSI, CNRS, Université Paris-Saclay, Campus Universitaire bat 508, Rue John von Neumann, F-91405 Orsay cedex, France
A. Belme
Sorbonne Universités, UPMC Univ Paris 06, UMR 7190, Institut Jean le Rond d'Alembert, F-75005, Paris, France; CNRS, UMR 7190, Institut Jean le Rond d'Alembert, F-75005, Paris, France

Краткое описание

We propose a noniterative robust numerical method for the nonintrusive uncertainty quantification of multivariate stochastic problems with reasonably compressible polynomial representations. The approximation is robust to data outliers or noisy evaluations which do not fall under the regularity assumption of a stochastic truncation error but pertains to a more complete error model, capable of handling interpretations of physical/computational model (or measurement) errors. The method relies on the cross-validation of a pseudospectral projection of the response on generalized Polynomial Chaos approximation bases; this allows an initial model selection and assessment yielding a preconditioned response. We then apply a l1-penalized regression to the preconditioned response variable. Nonlinear test cases have shown this approximation to be more effective in reducing the effect of scattered data outliers than standard compressed sensing techniques and of comparable efficiency to iterated robust regression techniques.


Articles with similar content:

EMBEDDED MODEL ERROR REPRESENTATION FOR BAYESIAN MODEL CALIBRATION
International Journal for Uncertainty Quantification, Vol.9, 2019, issue 4
Habib N. Najm, Xun Huan, Khachik Sargsyan
AN OPTIMAL SAMPLING RULE FOR NONINTRUSIVE POLYNOMIAL CHAOS EXPANSIONS OF EXPENSIVE MODELS
International Journal for Uncertainty Quantification, Vol.5, 2015, issue 3
Michael Sinsbeck, Wolfgang Nowak
ADAPTIVE SELECTION OF SAMPLING POINTS FOR UNCERTAINTY QUANTIFICATION
International Journal for Uncertainty Quantification, Vol.7, 2017, issue 4
Casper Rutjes, Enrico Camporeale, Ashutosh Agnihotri
INVERSE DETERMINATION OF SPATIALLY VARYING HEAT CAPACITY AND THERMAL CONDUCTIVITY IN ARBITRARY 2D OBJECTS
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2017, issue
George S. Dulikravich, Sohail R. Reddy, S. M. Javad Zeidi
IDENTIFICATION OF OPTIMAL REDUCED ORDER HOMOGENIZATION MODELS FOR FAILURE OF HETEROGENEOUS MATERIALS
International Journal for Multiscale Computational Engineering, Vol.11, 2013, issue 3
Caglar Oskay, Paul Sparks