Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
International Journal for Uncertainty Quantification
Импакт фактор: 3.259 5-летний Импакт фактор: 2.547 SJR: 0.417 SNIP: 0.8 CiteScore™: 1.52

ISSN Печать: 2152-5080
ISSN Онлайн: 2152-5099

Свободный доступ

International Journal for Uncertainty Quantification

DOI: 10.1615/Int.J.UncertaintyQuantification.2015011808
pages 139-169

HIERARCHICAL SPARSE BAYESIAN LEARNING FOR STRUCUTRAL HEALTH MONITORING WITH INCOMPLETE MODAL DATA

Yong Huang
Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, USA
James L. Beck
Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, USA

Краткое описание

For civil structures, structural damage due to severe loading events such as earthquakes, or due to long-term environmental degradation, usually occurs in localized areas of a structure. A new sparse Bayesian probabilistic framework for computing the probability of localized stiffness reductions induced by damage is presented that uses noisy incomplete modal data from before and after possible damage. This new approach employs system modal parameters of the structure as extra variables for Bayesian model updating with incomplete modal data. A specific hierarchical Bayesian model is constructed that promotes spatial sparseness in the inferred stiffness reductions in a way that is consistent with the Bayesian Ockham razor. To obtain the most plausible model of sparse stiffness reductions together with its uncertainty within a specified class of models, the method employs an optimization scheme that iterates among all uncertain parameters, including the hierarchical hyper-parameters. The approach has four important benefits: (1) it infers spatially sparse stiffness changes based on the identified modal parameters; (2) the uncertainty in the inferred stiffness reductions is quantified; (3) no matching of model and experimental modes is needed, and (4) solving the nonlinear eigenvalue problem of a structural model is not required. The proposed method is applied to two previously studied examples using simulated data: a ten-story shear-building and the three-dimensional braced-frame model from the Phase II Simulated Benchmark problem sponsored by the IASC-ASCE Task Group on Structural Health Monitoring. The results show that the occurrence of false-positive and false-negative damage detection is clearly reduced in the presence of modeling error (differences between the real structural behavior and the model of it). Furthermore, the identified most probable stiffness loss ratios are close to their actual values.


Articles with similar content:

UNCERTAINTY QUANTIFICATION IN DAMAGE MODELING OF HETEROGENEOUS MATERIALS
International Journal for Multiscale Computational Engineering, Vol.11, 2013, issue 3
Caglar Oskay, Sankaran Mahadevan, Michael J. Bogdanor
A HOLISTIC APPROACH TO UNCERTAINTY QUANTIFICATION WITH APPLICATION TO SUPERSONIC NOZZLE THRUST
International Journal for Uncertainty Quantification, Vol.2, 2012, issue 4
Christopher J. Roy, Michael S. Balch
PRIOR AND POSTERIOR ROBUST STOCHASTIC PREDICTIONS FOR DYNAMICAL SYSTEMS USING PROBABILITY LOGIC
International Journal for Uncertainty Quantification, Vol.3, 2013, issue 4
Alexandros Taflanidis, James L. Beck
A MIXED UNCERTAINTY QUANTIFICATION APPROACH USING EVIDENCE THEORY AND STOCHASTIC EXPANSIONS
International Journal for Uncertainty Quantification, Vol.5, 2015, issue 1
Tyler Winter, Serhat Hosder, Harsheel Shah
A BAYES NETWORK APPROACH TO UNCERTAINTY QUANTIFICATION IN HIERARCHICALLY DEVELOPED COMPUTATIONAL MODELS
International Journal for Uncertainty Quantification, Vol.2, 2012, issue 2
Sankaran Mahadevan, Thomas L. Paez, Angel Urbina