Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
International Journal for Uncertainty Quantification
Импакт фактор: 4.911 5-летний Импакт фактор: 3.179 SJR: 1.008 SNIP: 0.983 CiteScore™: 5.2

ISSN Печать: 2152-5080
ISSN Онлайн: 2152-5099

Свободный доступ

International Journal for Uncertainty Quantification

DOI: 10.1615/Int.J.UncertaintyQuantification.2016016194
pages 141-156

SOFTWARE RELIABILITY GROWTH MODEL WITH TEMPORAL CORRELATION IN A NETWORK ENVIRONMENT

Jiajun Xu
School of Computer Science and Engineering, Beihang University, Beijing 100191, China
Shuzhen Yao
School of Computer Science and Engineering, Beihang University, Beijing 100191, China
Shunkun Yang
School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China
Peng Wang
School of Mathematics and Systems Science, Beihang University, Beijing, China

Краткое описание

Increasingly software systems are developed to provide great flexibility to customers but also introduce great uncertainty for system development. The uncertain behavior of fault-detection rate has irregular fluctuation and is described as a Markovian stochastic processes (white noise). However, in many cases the white noise idealization is insufficient, and real fluctuations are always correlated and correlated fluctuations (or colored noise) are non-Markovian stochastic processes. We develop a new model to quantify the uncertainties within non-homogeneous Poisson process (NHPP) in the noisy environment. Based on a stochastic model of the software fault detection process, the environmental uncertainties collectively are treated as a noise of arbitrary distribution and correlation structure. Based on the stochastic model, the analytical solution can be derived. To validate our model, we consider five particular scenarios with distinct environmental uncertainty. Experimental comparisons with existing methods demonstrate that the new framework shows a closer fitting to actual data and exhibits a more accurately predictive power.


Articles with similar content:

SHAPLEY EFFECTS FOR SENSITIVITY ANALYSIS WITH CORRELATED INPUTS: COMPARISONS WITH SOBOL' INDICES, NUMERICAL ESTIMATION AND APPLICATIONS
International Journal for Uncertainty Quantification, Vol.9, 2019, issue 5
Bertrand Iooss, Clementine Prieur
SURROGATE MODELING OF STOCHASTIC FUNCTIONS−APPLICATION TO COMPUTATIONAL ELECTROMAGNETIC DOSIMETRY
International Journal for Uncertainty Quantification, Vol.9, 2019, issue 4
Yuanyuan Huang, Soumaya Azzi, Bruno Sudret, Joe Wiart
CORRELATION VISUALIZATION FOR STRUCTURAL UNCERTAINTY ANALYSIS
International Journal for Uncertainty Quantification, Vol.3, 2013, issue 2
Rudiger Westermann, Tobias Pfaffelmoser
ROBUSTNESS OF THE SOBOL' INDICES TO DISTRIBUTIONAL UNCERTAINTY
International Journal for Uncertainty Quantification, Vol.9, 2019, issue 5
Joseph Hart, Pierre A. Gremaud
HESSIAN-BASED SAMPLING FOR HIGH-DIMENSIONAL MODEL REDUCTION
International Journal for Uncertainty Quantification, Vol.9, 2019, issue 2
Omar Ghattas, Peng Chen