Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
International Journal for Uncertainty Quantification
Импакт фактор: 4.911 5-летний Импакт фактор: 3.179 SJR: 1.008 SNIP: 0.983 CiteScore™: 5.2

ISSN Печать: 2152-5080
ISSN Онлайн: 2152-5099

Свободный доступ

International Journal for Uncertainty Quantification

DOI: 10.1615/Int.J.UncertaintyQuantification.2018020911
pages 143-159

UTILIZING ADJOINT-BASED ERROR ESTIMATES FOR SURROGATE MODELS TO ACCURATELY PREDICT PROBABILITIES OF EVENTS

Troy Butler
Department of Mathematical and Statistical Sciences, University of Colorado Denver, Colorado 80217, USA
Timothy Wildey
Optimization and Uncertainty Quantification Department, Center for Computing Research, Sandia National Laboratories, Albuquerque, NM 87185

Краткое описание

We develop a procedure to utilize error estimates for samples of a surrogate model to compute robust upper and lower bounds on estimates of probabilities of events. We show that these error estimates can also be used in an adaptive algorithm to simultaneously reduce the computational cost and increase the accuracy in estimating probabilities of events using computationally expensive high-fidelity models. Specifically, we introduce the notion of reliability of a sample of a surrogate model, and we prove that utilizing the surrogate model for the reliable samples and the high-fidelity model for the unreliable samples gives precisely the same estimate of the probability of the output event as would be obtained by evaluation of the original model for each sample. The adaptive algorithm uses the additional evaluations of the high-fidelity model for the unreliable samples to locally improve the surrogate model near the limit state, which significantly reduces the number of high-fidelity model evaluations as the limit state is resolved. Numerical results based on a recently developed adjoint-based approach for estimating the error in samples of a surrogate are provided to demonstrate (1) the robustness of the bounds on the probability of an event, and (2) that the adaptive enhancement algorithm provides a more accurate estimate of the probability of the QoI event than standard response surface approximation methods at a lower computational cost.


Articles with similar content:

A MULTI-FIDELITY NEURAL NETWORK SURROGATE SAMPLING METHOD FOR UNCERTAINTY QUANTIFICATION
International Journal for Uncertainty Quantification, Vol.10, 2020, issue 4
Mohammad Motamed
AN ADAPTIVE MULTIFIDELITY PC-BASED ENSEMBLE KALMAN INVERSION FOR INVERSE PROBLEMS
International Journal for Uncertainty Quantification, Vol.9, 2019, issue 3
Tao Zhou, Liang Yan
ROBUST UNCERTAINTY QUANTIFICATION USING PRECONDITIONED LEAST-SQUARES POLYNOMIAL APPROXIMATIONS WITH l1-REGULARIZATION
International Journal for Uncertainty Quantification, Vol.6, 2016, issue 1
D. Lucor, A. Belme, Jan Van Langenhove
A NOVEL GLOBAL METHOD FOR RELIABILITY ANALYSIS WITH KRIGING
International Journal for Uncertainty Quantification, Vol.6, 2016, issue 5
Zhengming Wang, Xiaojun Duan, Zigan Zhao
TRANSITIONAL ANNEALED ADAPTIVE SLICE SAMPLING FOR GAUSSIAN PROCESS HYPER-PARAMETER ESTIMATION
International Journal for Uncertainty Quantification, Vol.6, 2016, issue 4
Alfredo Garbuno-Inigo, F. A. DiazDelaO, Konstantin M. Zuev