Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
International Journal for Uncertainty Quantification
Импакт фактор: 3.259 5-летний Импакт фактор: 2.547 SJR: 0.417 SNIP: 0.8 CiteScore™: 1.52

ISSN Печать: 2152-5080
ISSN Онлайн: 2152-5099

Свободный доступ

International Journal for Uncertainty Quantification

DOI: 10.1615/Int.J.UncertaintyQuantification.2011003343
pages 321-349

BIAS MINIMIZATION IN GAUSSIAN PROCESS SURROGATE MODELING FOR UNCERTAINTY QUANTIFICATION

Vadiraj Hombal
Vanderbilt University, Nashville, TN 37235
Sankaran Mahadevan
Civil and Environmental Engineering Department, Vanderbilt University, Nashville, Tennessee 37235, USA

Краткое описание

Uncertainty quantification analyses often employ surrogate models as computationally efficient approximations of computer codes simulating the physical phenomena. The accuracy and economy in the construction of surrogate models depends on the quality and quantity of data collected from the computationally expensive system models. Computationally efficient methods for accurate surrogate model training are thus required. This paper develops a novel approach to surrogate model construction based on the hierarchical decomposition of the approximation error. The proposed algorithm employs sparse Gaussian processes on a hierarchical grid to achieve a sparse nonlinear approximation of the underlying function. In contrast to existing methods, which are based on minimizing prediction variance, the proposed approach focuses on model bias and aims to improve the quality of reconstruction represented by the model. The performance of the algorithm is compared to existing methods using several numerical examples. In the examples considered, the proposed method demonstrates significant improvement in the quality of reconstruction for the same sample size.


Articles with similar content:

TRANSITIONAL ANNEALED ADAPTIVE SLICE SAMPLING FOR GAUSSIAN PROCESS HYPER-PARAMETER ESTIMATION
International Journal for Uncertainty Quantification, Vol.6, 2016, issue 4
Alfredo Garbuno-Inigo, F. A. DiazDelaO, Konstantin M. Zuev
VARIABLE-SEPARATION BASED ITERATIVE ENSEMBLE SMOOTHER FOR BAYESIAN INVERSE PROBLEMS IN ANOMALOUS DIFFUSION REACTION MODELS
International Journal for Uncertainty Quantification, Vol.9, 2019, issue 3
Yuming Ba, Na Ou, Lijian Jiang
HIGH DIMENSIONAL SENSITIVITY ANALYSIS USING SURROGATE MODELING AND HIGH DIMENSIONAL MODEL REPRESENTATION
International Journal for Uncertainty Quantification, Vol.5, 2015, issue 5
Edmondo Minisci, Marco Cisternino, Martin Kubicek
OPTIMIZATION-BASED SAMPLING IN ENSEMBLE KALMAN FILTERING
International Journal for Uncertainty Quantification, Vol.4, 2014, issue 4
Alexander Bibov, Heikki Haario, Antti Solonen, Johnathan M. Bardsley
ANALYSIS OF VARIANCE-BASED MIXED MULTISCALE FINITE ELEMENT METHOD AND APPLICATIONS IN STOCHASTIC TWO-PHASE FLOWS
International Journal for Uncertainty Quantification, Vol.4, 2014, issue 6
Guang Lin, Yalchin Efendiev, Lijian Jiang, Jia Wei