Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
International Journal for Uncertainty Quantification
Импакт фактор: 3.259 5-летний Импакт фактор: 2.547 SJR: 0.531 SNIP: 0.8 CiteScore™: 1.52

ISSN Печать: 2152-5080
ISSN Онлайн: 2152-5099

Свободный доступ

International Journal for Uncertainty Quantification

DOI: 10.1615/Int.J.UncertaintyQuantification.2017019428
pages 189-205

A FULLY ADAPTIVE INTERPOLATED STOCHASTIC SAMPLING METHOD FOR LINEAR RANDOM PDES

Felix Anker
Weierstraß-Institut für Angewandte Analysis und Stochastik, Berlin, Germany
Christian Bayer
Weierstraß-Institut für Angewandte Analysis und Stochastik, Berlin, Germany
Martin Eigel
Weierstraß-Institut für Angewandte Analysis und Stochastik, Berlin, Germany
Johannes Neumann
Weierstraß-Institut für Angewandte Analysis und Stochastik, Berlin, Germany
John Schoenmakers
Weierstraß-Institut für Angewandte Analysis und Stochastik, Berlin, Germany

Краткое описание

A numerical method for the fully adaptive sampling and interpolation of linear PDEs with random data is presented. It is based on the idea that the solution of the PDE with stochastic data can be represented as conditional expectation of a functional of a corresponding stochastic differential equation (SDE). The spatial domain is decomposed by a nonuniform grid and a classical Euler scheme is employed to approximately solve the SDE at grid vertices. Interpolation with a conforming finite element basis is employed to reconstruct a global solution of the problem. An a posteriori error estimator is introduced which provides a measure of the different error contributions. This facilitates the formulation of an adaptive algorithm to control the overall error by either reducing the stochastic error by locally evaluating more samples, or the approximation error by locally refining the underlying mesh. Numerical examples illustrate the performance of the presented novel method.


Articles with similar content:

A COMPARATIVE STUDY IN OPTICAL TOMOGRAPHY WITH REGULARIZATION TOOLS
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2013, issue
Olivier F. Balima
MULTISCALE PARAMETER IDENTIFICATION
International Journal for Multiscale Computational Engineering, Vol.10, 2012, issue 4
Paul Steinmann, Julia Mergheim, Ulrike Schmidt
A WEIGHT-BOUNDED IMPORTANCE SAMPLING METHOD FOR VARIANCE REDUCTION
International Journal for Uncertainty Quantification, Vol.9, 2019, issue 3
Linjun Lu, Tenchao Yu, Jinglai Li
UTILIZING ADJOINT-BASED ERROR ESTIMATES FOR SURROGATE MODELS TO ACCURATELY PREDICT PROBABILITIES OF EVENTS
International Journal for Uncertainty Quantification, Vol.8, 2018, issue 2
Timothy Wildey, Troy Butler
Adaptive Bridging of Scales in Continuum Modeling Based on Error Control
International Journal for Multiscale Computational Engineering, Vol.6, 2008, issue 4
Kenneth Runesson, Fredrik Larsson