Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Journal of Enhanced Heat Transfer
Импакт фактор: 1.406 5-летний Импакт фактор: 1.075 SJR: 0.287 SNIP: 0.653 CiteScore™: 1.2

ISSN Печать: 1065-5131
ISSN Онлайн: 1563-5074

Выпуски:
Том 27, 2020 Том 26, 2019 Том 25, 2018 Том 24, 2017 Том 23, 2016 Том 22, 2015 Том 21, 2014 Том 20, 2013 Том 19, 2012 Том 18, 2011 Том 17, 2010 Том 16, 2009 Том 15, 2008 Том 14, 2007 Том 13, 2006 Том 12, 2005 Том 11, 2004 Том 10, 2003 Том 9, 2002 Том 8, 2001 Том 7, 2000 Том 6, 1999 Том 5, 1998 Том 4, 1997 Том 3, 1996 Том 2, 1995 Том 1, 1994

Journal of Enhanced Heat Transfer

DOI: 10.1615/JEnhHeatTransf.2019030135
pages 451-470

EXPERIMENTAL STUDY OF MIST JET IMPINGEMENT COOLING

Vikash Kumar Singh Chauhan
Department of Mechanical Engineering, National Institute of Technology, Manipur, Imphal, Manipur 795004, India
Dushyant Singh
Department of Mechanical Engineering, National Institute of Technology, Manipur, Imphal, Manipur 795004, India
Dr. Singh works in a general area of fluid flow and heat transfer with a focus on understanding the flow physics and heat transfer characteristics of the complex problem in advanced industry problem, along with experimentally and numerically of interest.

Краткое описание

In this paper, an experimental study of mist jet impingement cooling over a heated flat surface is performed to identify the effect of Reynolds number, nozzle-to-plate spacing, and mist loading fraction. The parametric experiments were performed for Reynolds numbers ranging from 10,000 to 40,000, nondimensional nozzle-to-plate spacing of 32–56, and loading fraction ranging from 0 to 1%. The present study indicated that the Reynolds number (Redhyd ) and the loading fraction (f) increases the Nusselt number, whereas increasing the h/d ratio adversely affects the cooling. It is concluded that the loading fraction has the highest impact on the cooling controllability, while the Reynolds number and the h/d ratio have a secondary and tertiary impact on the cooling. Furthermore, based on the experimental results, a correlation function is developed. It is elucidated that a good correlation function can act as a better alternative over costly and prolonged experiments.

ЛИТЕРАТУРА

  1. Agarwal, C., Lyons, O.F., Kumar, R., Gupta, A., and Murray, D.B., Rewetting of a Hot Horizontal Surface through Mist Jet Impingement Cooling, Int. J. Heat Mass Transf., vol. 58, nos. 1-2, pp. 188-196, 2013.

  2. Agarwal, C., Kumar, R., Gupta, A., and Chatterjee, B., Maximum Surface Heat Flux during Jet Impingement Quenching of Vertical Hot Surface, J. Enhanced Heat Transf., vol. 22, no. 3, pp. 199-219, 2015.

  3. Chandratilleke, T.T., King, A., and Narayanaswamy, R., Heat Transfer and Flow Characteristics of Fluid Jets Impinging on a Surface with Cavities, J. Enhanced Heat Transf, vol. 17, no. 3, pp. 223-229, 2010.

  4. Chang, S.W. and Su, L.M., Heat Transfer of Confined Impinging Air-Water Mist Jet, JSME Int. J. Ser. B Fluids Thermal Eng, vol. 44, no. 2, pp. 274-287, 2011.

  5. Chauhan, V.K.S. and Singh, D., Numerical Study on Air-Atomized Water Mist Cooling of a Heated Flat Plate, Heat Transf. Res, vol. 50, no. 12, pp. 1205-1229, 2019.

  6. Downs, S. and James, E.H., Jet Impingement Heat Transfer-A Literature Survey, in ASME, AIChE and ANS, 24th National Heat Transfer Conference and Exhibition, Pittsburgh, PA, Aug. 9-12, 1987.

  7. Gao, N., Sun, H., and Ewing, D., Heat Transfer to Impinging Round Jets with Triangular Tabs, Int. J. Heat Mass Transf., vol. 46, no. 14, pp. 2557-2569, 2003.

  8. Graham, K.M. and Ramadhyani, S., Experimental and Theoretical Studies of Mist Jet Impingement Cooling, J. Heat Transf., vol. 118, no. 2, pp. 343-349,1996.

  9. Hrycak, P., Heat Transfer from Impinging Jets. A Literature Review, Newark, NJ: New Jersey Institute of Technology, 1981.

  10. Kanamori, A., Hiwada, M., Mimatsu, J., Sugimoto, H., and Oyakawa, K., Control of Impingement Heat Transfer Using Mist, J. Thermal Sci. Technol., vol. 4, no. 2, pp. 202-213, 2009.

  11. Katti, V. and Prabhu, S.V., Experimental Study and Theoretical Analysis of Local Heat Transfer Distribution between Smooth Flat Surface and Impinging Air Jet from a Circular Straight Pipe Nozzle, Int. J. Heat Mass Transf, vol. 51, nos. 17-18, pp. 4480-4495, 2008.

  12. Katti, V. and Prabhu, S.V., Influence of Pitch on Local Heat Transfer Distribution for Confined Impingement of Multiple Jet Arrays, J. Enhanced Heat Transf, vol. 18, no. 1, pp. 41-53, 2011.

  13. Kline, S.J. and McClintock, F., Describing Uncertainties in Single-Sample Experiments, Mech. Eng., vol. 75, pp. 3-8, 1953.

  14. Kumar, C.S. and Pattamatta, A., A Numerical Study of Convective Heat Transfer Enhancement with Jet Impingement Cooling Using Porous Obstacles, J. Enhanced Heat Transf., vol. 22, no. 4, pp. 303-328, 2015.

  15. Kuzma-Kichta, Y. and Leontiev, A.I., Choice and Justification of the Heat Transfer Intensification Methods, J. Enhanced Heat Transf, vol. 25, no. 6, pp. 465-564, 2018.

  16. Li, X., Gaddis, J.L., and Wang, T., Modeling of Heat Transfer in a Mist/Steam Impinging Jet, J. Heat Transf., vol. 123, no. 6, pp.1086-1092, 2001.

  17. Ligrani, P., McInturff, P., Suzuki, M., and Nakamata, C., Winglet-Pair Target Surface Roughness Influences on Impingement Jet Array Heat Transfer, J. Enhanced Heat Transf., vol. 26, no. 1, pp. 15-35, 2019.

  18. Lyons, O.F., Quinn, C., Persoons, T., and Murray, D.B., Heat Transfer and Flow in an Atomizing Mist Jet: A Combined Hot Film and Shadowgraph Imaging Approach, J. Phys.: Conf. Ser., vol. 395, no. 1, p. 012173,2012.

  19. Lytle, D. and Webb, B.W., Air Jet Impingement Heat Transfer at Low Nozzle-Plate Spacings, Int. J. Heat Mass Transf, vol. 37, no. 12, pp. 1687-1697, 1994.

  20. Luo, L., Wang, C., Wang, L., Sunden, B., and Wang, S., Computational Investigation of Dimple Effects on Heat Transfer and Friction Factor in a Lamilloy Cooling Structure, J. Enhanced Heat Transf, vol. 22, no. 2, pp. 147-175,2015.

  21. Martin, H., Heat and Mass Transfer between Impinging Gas Jets and Solid Surfaces, Adv. Heat Transf., vol. 13, pp. 1-60,1977.

  22. Pais, M.R., Chow, L.C., and Mahefkey, E.T., Surface Roughness and Its Effects on the Heat Transfer Mechanism in Spray Cooling, J. Heat Transf, vol. 114, no. 1, pp. 211-219, 1992.

  23. Pakhomov, M.A. and Terekhov, V.I., Enhancement of an Impingement Heat Transfer between Turbulent Mist Jet and Flat Surface, Int. J. Heat Mass Transf, vol. 53, nos. 15-16, pp. 3156-3165, 2010.

  24. Quinn, C., Murray, D.B., and Persoons, T., Heat Transfer Behaviour of a Dilute Impinging Air-Water Mist Jet at Low Wall Temperatures, Int. J. Heat Mass Transf, vol. 111, pp. 1234-1249, 2017.

  25. Shokouhmand, H. and Heyhat, M.M., Numerical Study on Heat Transfer Enhancement in a Mist/Air Impingement Jet, J. Enhanced Heat Transf., vol. 17, no. 3, pp. 231-242, 2010.

  26. Singh, D., Premachandran, B., and Kohli, S., Effect of Nozzle Shape on Jet Impingement Heat Transfer from a Circular Cylinder, Int. J. Thermal Sci., vol. 96, pp. 45-69, 2015.

  27. Sozbir, N., Chang, Y.W., and Yao, S.C., Heat Transfer of Impacting Water Mist on High Temperature Metal Surfaces, J. Heat Transf, vol. 125, no. 1, pp. 70-74, 2003.

  28. Uysal, U., Effect of Jet Diameter on Heat Transfer in a Two-Pass Channel, J. Enhanced Heat Transf., vol. 20, no. 3, pp 277-287, 2013.

  29. Vader, D.T., Incropera, F.P., and Viskanta, R., Local Convective Heat Transfer from a Heated Surface to an Impinging, Planar Jet of Water, Int. J. Heat Mass Transf., vol. 34, no. 3, pp. 611-623, 1991.

  30. Vouros, A., Vouros, A., and Panidis, T., Experimental Study of a Water-Mist Jet Issuing Normal to a Heated Flat Plate, Thermal Sci, vol. 20, no. 2, pp. 473-482,2016.

  31. Warrier, G. and Dhir, D.V.K., Comparison of Heat Removal Using Miniature Channels, Jets, and Sprays, J. Enhanced Heat Transf, vol. 20, no. 1, pp. 17-32,2013.

  32. Yang, G., Choi, M., and Lee, J.S., An Experimental Study of Slot Jet Impingement Cooling on Concave Surface: Effects of Nozzle Configuration and Curvature, Int. J. Heat Mass Transf, vol. 42, no. 12, pp. 2199-2209, 1999.

  33. Yang, J., Chow, L.C., and Pais, M.R., Nucleate Boiling Heat Transfer in Spray Cooling, J. Heat Transf, vol. 118, no. 3, pp. 668-671, 1996.


Articles with similar content:

EXPERIMENTAL INVESTIGATION OF IMPINGING HEAT TRANSFER OF PULSED JET ON CONCAVE PLATE
International Heat Transfer Conference 16, Vol.14, 2018, issue
Jing-Zhou Zhang, Yuan-wei Lyu, Xi-cheng Liu
EFFECT OF SYNTHETIC JET PARAMETERS ON CONTROLLED FLOW OVER AN AIRFOIL
International Journal of Fluid Mechanics Research, Vol.44, 2017, issue 5
Shyama Prasad Das, T. Parthasarathy
ANALYSIS OF FLOW AND HEAT TRANSFER CHARACTERISTICS AND LIGA FABRICATION TECHNIQUE FOR A MICRO NOZZLE
Energy and the Environment, 1998, Vol.0, 1998, issue
W. P. Ma , H. S. Lin , G. J. Hwang
STUDY ON HEAT TRANSFER AND FLOW VISUALIZATION OF JET INTERACTION DURING RECTANGULAR SLOT AIR JET IMPINGEMENT ON CONCAVE SURFACES
Proceedings of the 24th National and 2nd International ISHMT-ASTFE Heat and Mass Transfer Conference (IHMTC-2017), Vol.0, 2017, issue
Satheesha V, C K Umesh, B. K. Muralidhara
HEAT TRANSFER ENHANCEMENT CAUSED BY IMPINGING JETS OF Al2O33-WATER NANOFLUID ON A MICRO-PIN FIN ROUGHENED SURFACE UNDER CROSSFLOW CONDITIONS−A NUMERICAL STUDY
Journal of Enhanced Heat Transfer, Vol.27, 2020, issue 4
Naseem Uddin, Haseeb Ahsan, Tariq Jamil, H. M. Usman Khan, M. Saad Saeed, Usman Allauddin, Muhammad Shakaib, Rafay Mohiuddin