Доступ предоставлен для: Guest
Critical Reviews™ in Biomedical Engineering

Выходит 6 номеров в год

ISSN Печать: 0278-940X

ISSN Онлайн: 1943-619X

SJR: 0.262 SNIP: 0.372 CiteScore™:: 2.2 H-Index: 56

Indexed in

Mechanical Impact and Articular Cartilage

Том 34, Выпуск 5, 2006, pp. 347-378
DOI: 10.1615/CritRevBiomedEng.v34.i5.10
Get accessGet access

Краткое описание

Mechanical impact forces on articular cartilage can cause substantial damage. Car accidents, falls, and sports injuries have a tremendous effect on the U.S. and world populations, both in terms of economic and quality of life costs. While the effects of impact forces are known to be damaging, tolerance levels of cartilage to these forces and the mechanobiologic sequelae are still mostly unknown. Impact studies can be difficult to compare to each other due to the complex array of mechanical factors that are involved in a single impact. Previous work includes mathematical models, acute effects of impact, and in vivo and explant models of impact. These experiments have found that articular cartilage has a threshold above which impact forces are damaging, though this threshold is likely dependent on many factors, both genetic and environmental. This type of damage has been shown to vary according to the severity of the impact, from leaving the articular cartilage surface intact to fracture of the subchondral bone. Some studies have initiated investigations into ways to ameliorate the injurious response to impact, which may allow some patients to avoid the ensuing cartilage degeneration and osteoarthritis. Much work remains to be performed in understanding the genetic and biochemical response to impact. The goal of this research is to eventually decrease the incidence of posttraumatic arthritis and possibly even delay primary osteoarthritis, which can be achieved by using a robust testing design that includes morphological, biomechanical, quantitative biochemical, and genetic characterization of a model system for articular cartilage impact. This model system can then be used to test treatments to prevent degenerative changes in articular cartilage.

ЦИТИРОВАНО В
  1. Kim Woong, Thambyah Ashvin, Broom Neil, Does prior sustained compression make cartilage-on-bone more vulnerable to trauma?, Clinical Biomechanics, 27, 7, 2012. Crossref

  2. Cevidanes Lucia H. S., Styner Martin, Paniagua Beatriz, Gonçalves João Roberto, Orthodontic and Orthognathic Planning Using Cone Beam Computed Tomography, in Cone Beam Computed Tomography, 2013. Crossref

  3. Henak C.R., Carruth E.D., Anderson A.E., Harris M.D., Ellis B.J., Peters C.L., Weiss J.A., Finite element predictions of cartilage contact mechanics in hips with retroverted acetabula, Osteoarthritis and Cartilage, 21, 10, 2013. Crossref

  4. Egli Rainer J., Wernike Ellen, Grad Sibylle, Luginbühl Reto, , 289, 2011. Crossref

  5. Paschos Nikolaos K., Makris Eleftherios A., Hu Jerry C., Athanasiou Kyriacos A., Topographic Variations in Biomechanical and Biochemical Properties in the Ankle Joint: An In Vitro Bovine Study Evaluating Native and Engineered Cartilage, Arthroscopy: The Journal of Arthroscopic & Related Surgery, 30, 10, 2014. Crossref

  6. Verweij Lisanne M., van Schoor Natasja M., Deeg Dorly J. H., Dekker Joost, Visser Marjolein, Physical activity and incident clinical knee osteoarthritis in older adults, Arthritis & Rheumatism, 61, 2, 2009. Crossref

  7. Natoli Roman M., Athanasiou Kyriacos A., P188 Reduces Cell Death and IGF-I Reduces GAG Release Following Single-Impact Loading of Articular Cartilage, Journal of Biomechanical Engineering, 130, 4, 2008. Crossref

  8. Thambyah Ashvin, Broom Neil, How subtle structural changes associated with maturity and mild degeneration influence the impact-induced failure modes of cartilage-on-bone, Clinical Biomechanics, 25, 7, 2010. Crossref

  9. Bartell Lena R., Fortier Lisa A., Bonassar Lawrence J., Cohen Itai, Measuring microscale strain fields in articular cartilage during rapid impact reveals thresholds for chondrocyte death and a protective role for the superficial layer, Journal of Biomechanics, 48, 12, 2015. Crossref

  10. Changoor A., Coutu J. P., Garon M., Quenneville E., Hurtig M. B., Buschmann M. D., Streaming Potential-Based Arthroscopic Device is Sensitive to Cartilage Changes Immediately Post-Impact in an Equine Cartilage Injury Model, Journal of Biomechanical Engineering, 133, 6, 2011. Crossref

  11. Karanikas Konstantin, Froböse Ingo, Fiehn Rüdiger, Biomechanische Aspekte des Trainings in der Therapie, in Training in der Therapie - Grundlagen, 2015. Crossref

  12. Kunz Michael, Karanikas Konstantin, Biomechanische Eigenschaften von ausgewählten Körperstrukturen, in Medizinisches Aufbautraining / Medizinische Trainingstherapie, 2016. Crossref

  13. Shekhawat Vivek K., Schmid Thomas M., Pennekamp Peter H., Pacione Carol A., Chubinskaya Susan, Wimmer Markus A., Implications of trauma and subsequent articulation on the release of Proteoglycan-4 and tissue response in adult human ankle cartilage, Journal of Orthopaedic Research, 35, 3, 2017. Crossref

  14. Cevidanes Lucia H.S., Boen Vinicius, Paniagua Beatriz, Styner Martin, Nguyen Tung, Orthodontic and Orthognathic Surgery Planning Using CBCT, in Orthognathic Surgery, 2016. Crossref

  15. Kaleem B., Maier F., Drissi H., Pierce D.M., Low-energy impact of human cartilage: predictors for microcracking the network of collagen, Osteoarthritis and Cartilage, 25, 4, 2017. Crossref

  16. Szczodry Michal, Coyle Christian H., Kramer Scott J., Smolinski Patrick, Chu Constance R., Progressive Chondrocyte Death After Impact Injury Indicates a Need for Chondroprotective Therapy, The American Journal of Sports Medicine, 37, 12, 2009. Crossref

  17. Frossard Laurent Alain, Tranberg Roy, Haggstrom Eva, Pearcy Mark, Brånemark Rickard, Load on Osseointegrated Fixation of a Transfemoral Amputee During a Fall, Prosthetics & Orthotics International, 34, 1, 2010. Crossref

  18. Bartell Lena R., Xu Monica C., Bonassar Lawrence J., Cohen Itai, Local and global measurements show that damage initiation in articular cartilage is inhibited by the surface layer and has significant rate dependence, Journal of Biomechanics, 72, 2018. Crossref

  19. Cevidanes Lucia H. S., Ruellas Antonio C. O., Scarfe William C., Orthodontic and Orthognathic Surgery Planning and Simulation Software, in Maxillofacial Cone Beam Computed Tomography, 2018. Crossref

  20. Martin James A., Buckwalter Joseph A., Articular Cartilage Biology, in Sports Injuries, 2012. Crossref

  21. Fitzgerald Jamie, Endicott Jamie, Hansen Uwe, Janowitz Cathleen, Articular cartilage and sternal fibrocartilage respond differently to extended microgravity, npj Microgravity, 5, 1, 2019. Crossref

  22. Liu Xiuming, Zhou Zhihang, Mao Yi, Chen Xuzhuo, Zheng Jisi, Yang Chi, Zhang Shanyong, Huo Liang, Temporomandibular joint anchorage surgery: a 5-year follow-up study, Scientific Reports, 9, 1, 2019. Crossref

  23. Chen Christopher T., Torzilli Peter A., In Vitro Cartilage Explant Injury Models, in Post-Traumatic Arthritis, 2015. Crossref

  24. Muiños-López Emma, Rendal-Vázquez Mª Esther, Hermida-Gómez Tamara, Fuentes-Boquete Isaac, Díaz-Prado Silvia, Blanco Francisco J, Cryopreservation Effect on Proliferative and Chondrogenic Potential of Human Chondrocytes Isolated from Superficial and Deep Cartilage, The Open Orthopaedics Journal, 6, 1, 2012. Crossref

  25. Lee Christina M., Kisiday John D., McIlwraith C. Wayne, Grodzinsky Alan J., Frisbie David D., Development of an in vitro model of injury-induced osteoarthritis in cartilage explants from adult horses through application of single-impact compressive overload, American Journal of Veterinary Research, 74, 1, 2013. Crossref

Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции Цены и условия подписки Begell House Контакты Language English 中文 Русский Português German French Spain