Доступ предоставлен для: Guest
Critical Reviews™ in Biomedical Engineering

Выходит 6 номеров в год

ISSN Печать: 0278-940X

ISSN Онлайн: 1943-619X

SJR: 0.262 SNIP: 0.372 CiteScore™:: 2.2 H-Index: 56

Indexed in

The Role of Mechanical Stresses in Angiogenesis

Том 33, Выпуск 5, 2005, pp. 431-510
DOI: 10.1615/CritRevBiomedEng.v33.i5.10
Get accessGet access

Краткое описание

Angiogenesis is the formation of new capillary blood vessels from preexisting vessels. It is involved in many normal and diseased conditions, as well as in the application of tissue-engineered products. There has been extensive effort made to develop strategies for controlling pathological angiogenesis and for promoting vascularization in biomedical engineering applications. Central to advancing these strategies is a mechanistic understanding of the angiogenic process. Angiogenesis is tightly regulated by local tissue environmental factors, including soluble molecules, extracellular matrices, cell—cell interactions, and diverse mechanical forces. Great advances have been made in identifying the biochemical factors and intracellular signaling pathways that mediate the control of angiogenesis. This review focuses on work that explores the biophysical aspect of angiogenesis regulation. Specifically, we discuss the role of cell-generated forces, counterforces from the extracellular matrix, and mechanical forces associated with blood flow and extravascular tissue activity in the regulation of angiogenesis. Because angiogenesis occurs in a mechanically dynamic environment, future investigations should aim at understanding how cells integrate chemical and mechanical signals so that a rational approach to controlling angiogenesis will become possible. In this regard, computational models that incorporate multiple epigenetic factors to predict capillary patterning will be useful.

ЦИТИРОВАНО В
  1. Nicosia R. F., The aortic ring model of angiogenesis: a quarter century of search and discovery, Journal of Cellular and Molecular Medicine, 13, 10, 2009. Crossref

  2. Al-Kilani Alia, Lorthois Sylvie, Nguyen Thi-Hanh, Le Noble Ferdinand, Cornelissen Annemiek, Unbekandt Mathieu, Boryskina Olena, Leroy Loïc, Fleury Vincent, During vertebrate development, arteries exert a morphological control over the venous pattern through physical factors, Physical Review E, 77, 5, 2008. Crossref

  3. Chung Seok, Sudo Ryo, Mack Peter J., Wan Chen-Rei, Vickerman Vernella, Kamm Roger D., Cell migration into scaffolds under co-culture conditions in a microfluidic platform, Lab Chip, 9, 2, 2009. Crossref

  4. Garg K, Sell S A, Madurantakam P, Bowlin G L, Angiogenic potential of human macrophages on electrospun bioresorbable vascular grafts, Biomedical Materials, 4, 3, 2009. Crossref

  5. Chung Seok, Sudo Ryo, Zervantonakis Ioannis K., Rimchala Tharathorn, Kamm Roger D., Surface-Treatment-Induced Three-Dimensional Capillary Morphogenesis in a Microfluidic Platform, Advanced Materials, 21, 47, 2009. Crossref

  6. Xiong Anming, Austin Timothy W., Lagasse Eric, Uchida Nobuko, Tamaki Stanley, Bordier Bruno B., Weissman Irving L., Glenn Jeffrey S., Millan Maria T., Isolation of Human Fetal Liver Progenitors and Their Enhanced Proliferation by Three-Dimensional Coculture with Endothelial Cells, Tissue Engineering Part A, 14, 6, 2008. Crossref

  7. Wilkes R., Zhao Y., Kieswetter K., Haridas B., Effects of Dressing Type on 3D Tissue Microdeformations During Negative Pressure Wound Therapy: A Computational Study, Journal of Biomechanical Engineering, 131, 3, 2009. Crossref

  8. Wissler Josef H., Wissler Joerg E., Logemann Enno, Extracellular Functional Noncoding Nucleic Acid Bioaptamers and Angiotropin RNP Ribokines in Vascularization and Self-Tolerance, Annals of the New York Academy of Sciences, 1137, 1, 2008. Crossref

  9. Shrader Carl D., Ressetar Holly G., Luo Jia, Cilento Eugene V., Reilly Frank D., Acute stretch promotes endothelial cell proliferation in wounded healing mouse skin, Archives of Dermatological Research, 300, 9, 2008. Crossref

  10. Hadjizadeh Afra, Doillon Charles J., Directional migration of endothelial cells towards angiogenesis using polymer fibres in a 3D co-culture system, Journal of Tissue Engineering and Regenerative Medicine, 4, 7, 2010. Crossref

  11. Hosack Luke W., Firpo Matthew A., Scott J. Anna, Prestwich Glenn D., Peattie Robert A., Microvascular maturity elicited in tissue treated with cytokine-loaded hyaluronan-based hydrogels, Biomaterials, 29, 15, 2008. Crossref

  12. Ogihara Shigeki, Wang Hom-Lay, Periodontal Regeneration With or Without Limited Orthodontics for the Treatment of 2- or 3-Wall Infrabony Defects, Journal of Periodontology, 81, 12, 2010. Crossref

  13. Francis Megan E., Uriel Shiri, Brey Eric M., Endothelial Cell–Matrix Interactions in Neovascularization, Tissue Engineering, 2008. Crossref

  14. Francis Megan E., Uriel Shiri, Brey Eric M., Endothelial Cell–Matrix Interactions in Neovascularization, Tissue Engineering Part B: Reviews, 14, 1, 2008. Crossref

  15. Wilkes R., Zhao Y., Cunningham K., Kieswetter K., Haridas B., 3D strain measurement in soft tissue: Demonstration of a novel inverse finite element model algorithm on MicroCT images of a tissue phantom exposed to negative pressure wound therapy, Journal of the Mechanical Behavior of Biomedical Materials, 2, 3, 2009. Crossref

  16. Travasso Rui D.M., Castro Mario, Oliveira Joana C.R.E., The phase-field model in tumor growth, Philosophical Magazine, 91, 1, 2011. Crossref

  17. Waters Sarah L., Alastruey Jordi, Beard Daniel A., Bovendeerd Peter H.M., Davies Peter F., Jayaraman Girija, Jensen Oliver E., Lee Jack, Parker Kim H., Popel Aleksander S., Secomb Timothy W., Siebes Maria, Sherwin Spencer J., Shipley Rebecca J., Smith Nicolas P., van de Vosse Frans N., Theoretical models for coronary vascular biomechanics: Progress & challenges, Progress in Biophysics and Molecular Biology, 104, 1-3, 2011. Crossref

  18. Wang Zheng, Zheng Lanhong, Yang Shaoli, Niu Rongli, Chu Edward, Lin Xiukun, N-Acetylchitooligosaccharide is a potent angiogenic inhibitor both in vivo and in vitro, Biochemical and Biophysical Research Communications, 357, 1, 2007. Crossref

  19. Dao Thi Minh-Uyen, Trocmé Candice, Montmasson Marie-Paule, Fanchon Eric, Toussaint Bertrand, Tracqui Philippe, Investigating Metalloproteinases MMP-2 and MMP-9 Mechanosensitivity to Feedback Loops Involved in the Regulation of In Vitro Angiogenesis by Endogenous Mechanical Stresses, Acta Biotheoretica, 60, 1-2, 2012. Crossref

  20. McDaniel Dennis P., Shaw Gordon A., Elliott John T., Bhadriraju Kiran, Meuse Curt, Chung Koo-Hyun, Plant Anne L., The Stiffness of Collagen Fibrils Influences Vascular Smooth Muscle Cell Phenotype, Biophysical Journal, 92, 5, 2007. Crossref

  21. Edgar Lowell T., Sibole Scott C., Underwood Clayton J., Guilkey James E., Weiss Jeffrey A., A computational model ofin vitroangiogenesis based on extracellular matrix fibre orientation, Computer Methods in Biomechanics and Biomedical Engineering, 16, 7, 2013. Crossref

  22. Shin Hainsworth Y., Underwood Ryan M., Fannon Michael W., Fluid Pressure Is a Magnitude-Dependent Modulator of Early Endothelial Tubulogenic Activity: Implications Related to a Potential Tissue-Engineering Control Parameter, Tissue Engineering Part A, 18, 23-24, 2012. Crossref

  23. Lemon Greg, Howard Daniel, Tomlinson Matthew J., Buttery Lee D., Rose Felicity R.A.J., Waters Sarah L., King John R., Mathematical modelling of tissue-engineered angiogenesis, Mathematical Biosciences, 221, 2, 2009. Crossref

  24. Abe Yoshinori, Sudo Ryo, Ikeda Mariko, Tanishita Kazuo, Steady and pulsatile shear stress induce different three-dimensional endothelial networks through pseudopodium formation, Journal of Biorheology, 27, 1-2, 2013. Crossref

  25. Vilanova Guillermo, Colominas Ignasi, Gomez Hector, Capillary networks in tumor angiogenesis: From discrete endothelial cells to phase-field averaged descriptions via isogeometric analysis, International Journal for Numerical Methods in Biomedical Engineering, 29, 10, 2013. Crossref

  26. Vilanova Guillermo, Colominas Ignasi, Gomez Hector, Coupling of discrete random walks and continuous modeling for three-dimensional tumor-induced angiogenesis, Computational Mechanics, 53, 3, 2014. Crossref

  27. Wilkins Justin R., Pike Daniel B., Gibson Christopher C., Li Li, Shiu Yan-Ting, The interplay of cyclic stretch and vascular endothelial growth factor in regulating the initial steps for angiogenesis, Biotechnology Progress, 31, 1, 2015. Crossref

  28. Hoying James B., Utzinger Urs, Weiss Jeffrey A., Formation of Microvascular Networks: Role of Stromal Interactions Directing Angiogenic Growth, Microcirculation, 21, 4, 2014. Crossref

  29. Burton G J, Charnock-Jones D S, Jauniaux E, Regulation of vascular growth and function in the human placenta, REPRODUCTION, 138, 6, 2009. Crossref

  30. Edgar Lowell T., Maas Steve A., Guilkey James E., Weiss Jeffrey A., A coupled model of neovessel growth and matrix mechanics describes and predicts angiogenesis in vitro, Biomechanics and Modeling in Mechanobiology, 14, 4, 2015. Crossref

  31. Wilkins Justin R., Pike Daniel B., Gibson Christopher C., Kubota Atsutoshi, Shiu Yan-Ting, Differential effects of cyclic stretch on bFGF- and VEGF-induced sprouting angiogenesis, Biotechnology Progress, 30, 4, 2014. Crossref

  32. Edgar Lowell T., Hoying James B., Weiss Jeffrey A., In Silico Investigation of Angiogenesis with Growth and Stress Generation Coupled to Local Extracellular Matrix Density, Annals of Biomedical Engineering, 43, 7, 2015. Crossref

  33. Heck T.A.M., Vaeyens M. M., Van Oosterwyck H., Stephanou A., Volpert V., Computational Models of Sprouting Angiogenesis and Cell Migration: Towards Multiscale Mechanochemical Models of Angiogenesis, Mathematical Modelling of Natural Phenomena, 10, 1, 2015. Crossref

  34. Schumann Paul, Kampmann Andreas, Sauer Gisa, Lindhorst Daniel, von See Constantin, Stoetzer Marcus, Tavassol Frank, Gellrich Nils-Claudius, Rücker Martin, Essig Harald, Accelerated vascularization of tissue engineering constructs in vivo by preincubated co-culture of aortic fragments and osteoblasts, Biochemical Engineering Journal, 105, 2016. Crossref

  35. Stan R.V., In Vitro Vascular Cell Culture Systems – Endothelial Cell Culture Systems, in Comprehensive Toxicology, 2010. Crossref

  36. Giverso Chiara, Ciarletta Pasquale, Tumour angiogenesis as a chemo-mechanical surface instability, Scientific Reports, 6, 1, 2016. Crossref

  37. de Almeida Cardoso Mauricio, de Molon Rafael Scaf, de Avila Erica Dorigatti, Guedes Fabio Pinto, Battilani Filho Valter Antonio Ban, Capelozza Filho Leopoldino, Correa Marcio Aurelio, Nary Filho Hugo, Facial and occlusal esthetic improvements of an adult skeletal Class III malocclusion using surgical, orthodontic, and implant treatment, The Korean Journal of Orthodontics, 46, 1, 2016. Crossref

  38. Jason Gao Guo-Jie, Holcomb Michael C, Thomas Jeffrey H, Blawzdziewicz Jerzy, Embryo as an active granular fluid: stress-coordinated cellular constriction chains, Journal of Physics: Condensed Matter, 28, 41, 2016. Crossref

  39. Edgar Lowell T., Underwood Clayton J., Guilkey James E., Hoying James B., Weiss Jeffrey A., Yanagisawa Hiromi, Extracellular Matrix Density Regulates the Rate of Neovessel Growth and Branching in Sprouting Angiogenesis, PLoS ONE, 9, 1, 2014. Crossref

  40. Huang Chenyu, Liu Longwei, You Zhifeng, Wang Bingjie, Du Yanan, Ogawa Rei, Keloid progression: a stiffness gap hypothesis, International Wound Journal, 14, 5, 2017. Crossref

  41. Hadjizadeh Afra, Ghasemkhah Farzaneh, Ghasemzaie Niloofar, Polymeric Scaffold Based Gene Delivery Strategies to Improve Angiogenesis in Tissue Engineering: A Review, Polymer Reviews, 57, 3, 2017. Crossref

  42. Michl Inessa, Nolte Dirk, Tschammler Claudia, Kunkel Martin, Linsenmann Robert, Angermair Johannes, Premolar autotransplantation in juvenile dentition: quantitative assessment of vertical bone and soft tissue growth, Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 124, 1, 2017. Crossref

  43. Zheng Wei, Christensen Lance P., Tomanek Robert J., Differential effects of cyclic and static stretch on coronary microvascular endothelial cell receptors and vasculogenic/angiogenic responses, American Journal of Physiology-Heart and Circulatory Physiology, 295, 2, 2008. Crossref

  44. Santos-Oliveira Patrícia, Correia António, Rodrigues Tiago, Ribeiro-Rodrigues Teresa M, Matafome Paulo, Rodríguez-Manzaneque Juan Carlos, Seiça Raquel, Girão Henrique, Travasso Rui D. M., Van Oosterwyck Hans, The Force at the Tip - Modelling Tension and Proliferation in Sprouting Angiogenesis, PLOS Computational Biology, 11, 8, 2015. Crossref

  45. Rocha Luís A., Learmonth David A., Sousa Rui A., Salgado António J., αvβ3 and α5β1 integrin-specific ligands: From tumor angiogenesis inhibitors to vascularization promoters in regenerative medicine?, Biotechnology Advances, 36, 1, 2018. Crossref

  46. ABE Yoshinori, SUDO Ryo, IKEDA Mariko, TANISHITA Kazuo, Three-Dimensional Network Formation of Endothelial Cells Depended on Shear Stress(Fluids Engineering), Transactions of the Japan Society of Mechanical Engineers Series B, 76, 767, 2010. Crossref

  47. Fernandes Denise C., Araujo Thaís L.S., Laurindo Francisco R.M., Tanaka Leonardo Y., Hemodynamic Forces in the Endothelium: From Mechanotransduction to Implications on Development of Atherosclerosis, in Endothelium and Cardiovascular Diseases, 2018. Crossref

  48. TARFULEA NICOLETA, A DISCRETE MATHEMATICAL MODEL FOR SINGLE AND COLLECTIVE MOVEMENT IN AMOEBOID CELLS, Journal of Biological Systems, 26, 02, 2018. Crossref

  49. Vilanova Guillermo, Burés Miguel, Colominas Ignasi, Gomez Hector, Computational modelling suggests complex interactions between interstitial flow and tumour angiogenesis, Journal of The Royal Society Interface, 15, 146, 2018. Crossref

  50. SUDO Ryo, Imaging analysis of flow-induced vascular network formation, Japanese Journal of Thrombosis and Hemostasis, 24, 6, 2013. Crossref

  51. Liu Jie, Agarwal Sudha, Mechanical Signals Activate Vascular Endothelial Growth Factor Receptor-2 To Upregulate Endothelial Cell Proliferation during Inflammation, The Journal of Immunology, 185, 2, 2010. Crossref

  52. Xu Jiangping, Vilanova Guillermo, Gomez Hector, Phase-field model of vascular tumor growth: Three-dimensional geometry of the vascular network and integration with imaging data, Computer Methods in Applied Mechanics and Engineering, 359, 2020. Crossref

  53. Edgar Lowell T., Hoying James B., Utzinger Urs, Underwood Clayton J., Krishnan Laxminarayanan, Baggett Brenda K., Maas Steve A., Guilkey James E., Weiss Jeffrey A., Mechanical Interaction of Angiogenic Microvessels With the Extracellular Matrix, Journal of Biomechanical Engineering, 136, 2, 2014. Crossref

  54. Strobel Hannah A., Moss Sarah M., Hoying James B., Biofabrication of tissue perfusion systems and microvasculatures, in Rapid Prototyping of Biomaterials, 2020. Crossref

  55. Rauff Adam, LaBelle Steven A., Strobel Hannah A., Hoying James B., Weiss Jeffrey A., Imaging the Dynamic Interaction Between Sprouting Microvessels and the Extracellular Matrix, Frontiers in Physiology, 10, 2019. Crossref

  56. Abe Yoshinori, Watanabe Masafumi, Chung Seok, Kamm Roger D., Tanishita Kazuo, Sudo Ryo, Balance of interstitial flow magnitude and vascular endothelial growth factor concentration modulates three-dimensional microvascular network formation, APL Bioengineering, 3, 3, 2019. Crossref

  57. SUDO Ryo, Multi-cellular Morphogenesis Derived by Interstitial Flow, Seibutsu Butsuri, 60, 1, 2020. Crossref

  58. Angulo-Urarte Ana, van der Wal Tanne, Huveneers Stephan, Cell-cell junctions as sensors and transducers of mechanical forces, Biochimica et Biophysica Acta (BBA) - Biomembranes, 1862, 9, 2020. Crossref

  59. Flegg Jennifer A., Menon Shakti N., Byrne Helen M., McElwain D. L. Sean, A Current Perspective on Wound Healing and Tumour-Induced Angiogenesis, Bulletin of Mathematical Biology, 82, 2, 2020. Crossref

  60. Dew Lindsey, MacNeil Sheila, Chong Chuh Khiun, Vascularization strategies for tissue engineers, Regenerative Medicine, 10, 2, 2015. Crossref

  61. Mammoto Akiko, Mammoto Tadanori, Ingber Donald E., Mechanosensitive mechanisms in transcriptional regulation, Journal of Cell Science, 2012. Crossref

  62. da Silva Vanessa Camila, de Molon Rafael Scaf, Martins Renato Parsekian, Ribeiro Fernando Salimon, Pontes Ana Emília Farias, Zandim-Barcelos Daniela Leal, Leite Fábio Renato Manzolli, Benatti Neto Carlos, Marcantonio Rosemary Adriana Chiérici, Cirelli Joni Augusto, Effects of orthodontic tooth extrusion produced by different techniques, on the periodontal tissues: a histological study in dogs, Archives of Oral Biology, 116, 2020. Crossref

  63. Bhat Sharath M., Badiger Vaishnavi A., Vasishta Sampara, Chakraborty Juhi, Prasad Seetharam, Ghosh Sourabh, Joshi Manjunath B., 3D tumor angiogenesis models: recent advances and challenges, Journal of Cancer Research and Clinical Oncology, 147, 12, 2021. Crossref

  64. Song Min, Finley Stacey D., Mechanistic characterization of endothelial sprouting mediated by pro‐angiogenic signaling, Microcirculation, 29, 2, 2022. Crossref

  65. Gholobova D., Terrie L., Gerard M., Declercq H., Thorrez L., Vascularization of tissue-engineered skeletal muscle constructs, Biomaterials, 235, 2020. Crossref

  66. Wang Pei-Yun, Shih Kao-Shang, Ma Hsiao-Li, Chiang Hongsen, Chen Pei-Yu, Chao Yuan-Hung, Rolf Christer, Wang Hsing-Kuo, Acute and Long-Term Effects of Mechanotherapy on the Outcome After an Achilles Repair: A Prospective Cohort Study With Historical Controls, Archives of Physical Medicine and Rehabilitation, 100, 11, 2019. Crossref

  67. Apelqvist Jan, Willy Christian, Fagerdahl Ann-Mari, Fraccalvieri Marco, Malmsjö Malin, Piaggesi Alberto, Probst Astrid, Vowden Peter, EWMA Document: Negative Pressure Wound Therapy, Journal of Wound Care, 26, Sup3, 2017. Crossref

  68. Gasser T. Christian, The Vascular Wall, an Active Entity, in Vascular Biomechanics, 2021. Crossref

  69. Apeldoorn Cameron, Safaei Soroush, Paton Julian, Maso Talou Gonzalo D., Computational models for generating microvascular structures: Investigations beyond medical imaging resolution, WIREs Mechanisms of Disease, 2022. Crossref

  70. Fan Na, Feng Gangfei, Tan Yanwei, Zou Jie, Peng Bei, Overview of Vascular Morphology Undergoing Angiogenesis Based on Mathematical Modeling, in Proceedings of the Eighth Asia International Symposium on Mechatronics, 885, 2022. Crossref

  71. Watanabe Ryota, Matsugaki Aira, Ishimoto Takuya, Ozasa Ryosuke, Matsumoto Takuya, Nakano Takayoshi, A Novel Ex Vivo Bone Culture Model for Regulation of Collagen/Apatite Preferential Orientation by Mechanical Loading, International Journal of Molecular Sciences, 23, 13, 2022. Crossref

  72. Guerra Ana, Belinha Jorge, Natal Jorge Renato, Using a meshless method to assess the effect of mechanical loading in angiogenesis, Mathematics and Computers in Simulation, 202, 2022. Crossref

  73. Akbarian Mohsen, Bertassoni Luiz E., Tayebi Lobat, Biological aspects in controlling angiogenesis: current progress, Cellular and Molecular Life Sciences, 79, 7, 2022. Crossref

  74. Kugeratski Fernanda G., Santi Alice, Zanivan Sara, Extracellular vesicles as central regulators of blood vessel function in cancer, Science Signaling, 15, 753, 2022. Crossref

  75. Francescone Ralph, Vendramini-Costa Débora Barbosa, In Vitro Models to Study Angiogenesis and Vasculature, in Vasculogenic Mimicry, 2514, 2022. Crossref

Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции Цены и условия подписки Begell House Контакты Language English 中文 Русский Português German French Spain