Доступ предоставлен для: Guest

NON-NEWTONIAN FLOW IN DEFORMABLE POROUS MEDIA: MODELING AND SIMULATIONS OF COMPRESSION MOLDING PROCESSES

Том 23, Выпуск 5, 2020, pp. 465-476
DOI: 10.1615/JPorMedia.2020027274
Get accessGet access

Краткое описание

The aim of this study is to develop a mathematical model based on power law fluid using mixture theory. The resulting system is solved numerically and graphs are produced to highlight the unidirectional compression molding process. In this industrial process, a piston operates on the top of the pile to compress the preimpregnated layers. The moving domain problem is modeled using Eulerian coordinates, and then transformed to fixed domain using Lagrangian coordinates. The dynamics are controlled by velocity of piston or pressure applied on the piston. We find that there is a homogeneous increase in solid volume fraction for shear thickening fluid as compared to shear thinning fluid.

ЛИТЕРАТУРА
  1. Ahmed, A., Siddique, J.I., and Mahmood, A., Non-Newtonian Flow-Induced Deformation from Pressurized Cavities in Absorbing Porous Tissues, Comput. Methods Biomech. Biomed. Eng., vol. 20, no. 13, pp. 1464-1473,2017.

  2. Ambrosi, D. and Preziosi, L., Modelling Matrix Injection through Elastic Porous Preforms, Compos. Part A: Appl. Sci. Manufact., vol. 29, nos. 1-2, pp. 5-18,1998.

  3. Anderson, D.M., Imbibition of a Liquid Droplet on a Deformable Porous Substrate, J. Phys. Fluids, vol. 17, no. 8, p. 087104, 2005.

  4. Andersson, H.I., Bech, K.H., andDandapat, B.S., Magnetohydrodynamic Flow of a Power-Law Fluid over a Stretching Sheet, Int. J. Non-Linear Mech, vol. 27, no. 6, pp. 929-936, 1992.

  5. Ateshian, G.A., On the Theory of Reactive Mixtures for Modeling Biological Growth, J. Biomech. Model. Mechanobiol., vol. 6, no. 6, pp. 423-445, 2007.

  6. Atkin, R.J. and Craine, R.E., Continuum Theories of Mixtures: Basic Theory and Historical Development, Quart. J. Mech. Appl. Math, vol. 29, no. 2, pp. 209-244, 1976.

  7. Barry, S.I. and Aldis, G.K., Comparison of Models for Flow Induced Deformation of Soft Biological Tissue, J. Biomech., vol. 23, no. 7, pp. 647-654, 1990.

  8. Barry, S.I., Parker, K.H., and Aldis, G.K., Fluid Flow over a Thin Deformable Porous Layer, J. Zeitschrift fur Angewandte Mathe- matik undPhysik ZAMP, vol. 42, no. 5, pp. 633-648, 1991.

  9. Biot, M.A., General Theory of Three-Dimensional Consolidation, J. Appl. Phys., vol. 12, no. 2, pp. 155-164,1941.

  10. Biot, M.A., Theory of Elasticity and Consolidation for a Porous Anisotropic Solid, J. Appl. Phys., vol. 26, no. 2, pp. 182-185, 1955.

  11. Bowen, R.M., Theory of Mixtures, in Continuum Physics, A.C. Eringen, Ed., New York: Academic Press, pp. 1-127, 1976.

  12. Brouwer, W.D., Van Herpt, E.C.F.C., and Labordus, M., Vacuum Injection Moulding for Large Structural Applications, Compos. Part A: Appl. Sci. Manufact, vol. 34, no. 6, pp. 551-558, 2003.

  13. Chou, S.Y., Krauss, P.R., and Renstrom, P. J., Imprint Lithography with 25-Nanometer Resolution, J. Sci., vol. 272, no. 5258, pp. 85-87, 1996.

  14. Coussy, O., Poromechanics, New York: John Wiley & Sons, 2004.

  15. Darcy, H., Les Fontaines Publiques de la Ville de Dijon, Paris: Victor Dalmont, 1856.

  16. Delker, T., Pengra, D.B., and Wong, P.Z., Interface Pinning and the Dynamics of Capillary Rise in Porous Media, Phys. Rev. Lett:., vol. 76, no. 16, p. 2902,1996.

  17. Evans, R.D., Hudson, C.S., and Greenlee, J.E., The Effect of an Immobile Liquid Saturation on the Non-Darcy Flow Coefficient in Porous Media, SPEProduct. Eng., vol. 2, no. 4, pp. 331-338, 1987.

  18. Farina, A., Cocito, P., and Boretto, G., Flow in Deformable Porous Media: Modelling and Simulations of Compression Moulding Processes, Math. Comput. Modell., vol. 26, no. 11, pp. 1-15, 1997.

  19. Farina, A. and Preziosi, L., Non-Isothermal Injection Molding with Resin Cure and Preform Deformability, Compos. Part A: Appl. Sci. Manufact, vol. 31, no. 12, pp. 1355-1372, 2000.

  20. Ghomashchi, M.R. and Vikhrov, A., Squeeze Casting: An Overview, J. Mater. Process. Technol., vol. 101, nos. 1-3, pp. 1-9,2000.

  21. Hatami, M. and Ganji, D.D., Heat Transfer and Flow Analysis for SA-TiO2 Non-Newtonian Nanofluid Passing through the Porous Media between Two Coaxial Cylinders, J. Mol. Liq., vol. 188, pp. 155-161, 2013.

  22. Huang, Z., Zhang, X., Yao, J., and Wu, Y., Non-Darcy Displacement by a Non-Newtonian Fluid in Porous Media According to the Barree-Conway Model, Adv. Geo-Energy Res., vol. 1, no. 2, pp. 74-85, 2017.

  23. Isayev, A., Injection and Compression Molding Fundamentals, Boca Raton, FL: CRC Press, 2012.

  24. Kim, Y.R., McCarthy, S.P., and Fanucci, J.P., Compressibility and Relaxation of Fiber Reinforcements during Composite Processing, Polymer Compos., vol. 12, no. 1, pp. 13-19, 1991.

  25. Lago, M. and Araujo, M., Capillary Rise in Porous Media, Physica A: Stat. Mech. Appl, vol. 289, nos. 1-2, pp. 1-17, 2001.

  26. Liu, K.F. and Mei, C.C., Slow Spreading of a Sheet of Bingham Fluid on an Inclined Plane, J. Fluid Mech., no. 207, pp. 505-529, 1989.

  27. Matsuhisa, S. and Bird, R.B., Analytical and Numerical Solutions for Laminar Flow of the Non-Newtonian Ellis Fluid, AIChE J, vol. 11, no. 4, pp. 588-595, 1965.

  28. Pearson, J.R.A. and Tardy, P.M.J., Models for Flow of Non-Newtonian and Complex Fluids through Porous Media, J. Non-Newtonian Fluid Mech., vol. 102, no. 2, pp. 447-473,2002.

  29. Pezron, I., Bourgain, G., and Quere, D., Imbibition of a Fabric, J. ColloidInterf. Sci., vol. 173, no. 2, pp. 319-327, 1995.

  30. Siddique, J.I. and Anderson, D.M., Capillary Rise of a Non-Newtonian Liquid into a Deformable Porous Material, J. Porous Media, vol. 14, no. 12, pp. 1087-1102,2011.

  31. Siddique, J.I. and Kara, A., Capillary Rise of Magnetohydrodynamics Liquid into Deformable Porous Material, J. Appl. Fluid Mech., vol. 9, no. 6, pp. 2837-2843,2016.

  32. Siddique, J.I., Anderson, D.M., and Bondarev, A., Capillary Rise of a Liquid into a Deformable Porous Material, J. Phys. Fluids, vol. 21, no. 1, p. 013106,2009.

  33. Siddique, J.I., Ahmed, A., Aziz, A., and Khalique, C.M., A Review of Mixture Theory for Deformable Porous Media and Applications, J. Appl. Sci., vol. 7, no. 9, p. 917,2017.

  34. Sochi, T., Flow of Non-Newtonian Fluids in Porous Media, J. Polymer Sci. PartB: Polymer Phys., vol. 48, no. 23, pp. 2437-2767, 2010.

  35. Taklifi, A. and Aliabadi, A., Analytical Solution of Unsteady MHD Periodic Flow of a Non-Newtonian Fluid through a Porous Channel, J. Porous Media, vol. 15, no. 11, pp. 1051-1059, 2012.

  36. Terzaghi, K., Principles of Soil Mechanics, IV. Settlement and Consolidation of Clay, J. Eng. News-Record., vol. 95, no. 3, pp. 874-878, 1925.

  37. Tong, D. and Hu, H., Flow Analysis of Non-Newtonian Viscoelastic Fluids in Porous Media, J. Porous Media, vol. 13, no. 5, pp. 477-486,2010.

  38. Trochu, F., Gauvin, R., and Gao, D.M., Numerical Analysis of the Resin Transfer Molding Process by the Finite Element Method, Adv. Polymer Tech.: J. Polymer Process. Inst., vol. 12, no. 4, pp. 329-342, 1993.

  39. Uscilowska, A., Non-Newtonian Fluid Flow in a Porous Medium, J. Mech. Mater. Struct., vol. 3, no. 6, pp. 1151-1159,2008.

  40. Wei, H., Chen, J.S., and Hillman, M., A Stabilized Nodally Integrated Meshfree Formulation for Fully Coupled Hydro-Mechanical Analysis of Fluid-Saturated Porous Media, J. Comput. Fluids, vol. 141, pp. 105-115, 2016.

  41. Yi, A.Y. and Jain, A., Compression Molding of Aspherical Glass Lenses-A Combined Experimental and Numerical Analysis, J. Am. Ceramic Soc., vol. 88, no. 3, pp. 579-586, 2005.

Статьи, принятые к публикации

Effects of Momentum Slip and Convective Boundary Condition on a Forced Convection in a Channel Filled with Bidisperse Porous Medium (BDPM) Vanengmawia PC, Surender Ontela ON THERMAL CONVECTION IN ROTATING CASSON NANOFLUID PERMEATED WITH SUSPENDED PARTICLES IN A DARCY-BRINKMAN POROUS MEDIUM Pushap Sharma, Deepak Bains, G. C. Rana Effect of Microstructures on Mass Transfer inside a Hierarchically-structured Porous Catalyst Masood Moghaddam, Abbas Abbassi, Jafar Ghazanfarian Insight into the impact of melting heat transfer and MHD on stagnation point flow of tangent hyperbolic fluid over a porous rotating disk Priya Bartwal, Himanshu Upreti, Alok Kumar Pandey Numerical Simulation of 3D Darcy-Forchheimer Hybrid Nanofluid Flow with Heat Source/Sink and Partial Slip Effect across a Spinning Disc Bilal Ali, Sidra Jubair, Md Irfanul Haque Siddiqui Fractal model of solid-liquid two-phase thermal transport characteristics in the rough fracture network shanshan yang, Qiong Sheng, Mingqing Zou, Mengying Wang, Ruike Cui, Shuaiyin Chen, Qian Zheng Application of Artificial Neural Network for Modeling of Motile Microorganism-Enhanced MHD Tangent Hyperbolic Nanofluid across a vertical Slender Stretching Surface Bilal Ali, Shengjun Liu, Hongjuan Liu Estimating the Spreading Rates of Hazardous Materials on Unmodified Cellulose Filter Paper: Implications on Risk Assessment of Transporting Hazardous Materials Heshani Manaweera Wickramage, Pan Lu, Peter Oduor, Jianbang Du ELASTIC INTERACTIONS BETWEEN EQUILIBRIUM PORES/HOLES IN POROUS MEDIA UNDER REMOTE STRESS Kostas Davanas Gravity modulation and its impact on weakly nonlinear bio-thermal convection in a porous layer under rotation: a Ginzburg-Landau model approach Michael Kopp, Vladimir Yanovsky Pore structure and permeability behavior of porous media under in-situ stress and pore pressure: Discrete element method simulation on digital core Jun Yao, Chunqi Wang, Xiaoyu Wang, Zhaoqin Huang, Fugui Liu, Quan Xu, Yongfei Yang Influence of Lorentz forces on forced convection of Nanofluid in a porous lid driven enclosure Yi Man, Mostafa Barzegar Gerdroodbary SUTTERBY NANOFLUID FLOW WITH MICROORGANISMS AROUND A CURVED EXPANDING SURFACE THROUGH A POROUS MEDIUM: THERMAL DIFFUSION AND DIFFUSION THERMO IMPACTS galal Moatimid, Mona Mohamed, Khaled Elagamy CHARACTERISTICS OF FLOW REGIMES IN SPIRAL PACKED BEDS WITH SPHERES Mustafa Yasin Gökaslan, Mustafa Özdemir, Lütfullah Kuddusi Numerical study of the influence of magnetic field and throughflow on the onset of thermo-bio-convection in a Forchheimer‑extended Darcy-Brinkman porous nanofluid layer containing gyrotactic microorganisms Arpan Garg, Y.D. Sharma, Subit K. Jain, Sanjalee Maheshwari A nanofluid couple stress flow due to porous stretching and shrinking sheet with heat transfer A. B. Vishalakshi, U.S. Mahabaleshwar, V. Anitha, Dia Zeidan ROTATING WAVY CYLINDER ON BIOCONVECTION FLOW OF NANOENCAPSULATED PHASE CHANGE MATERIALS IN A FINNED CIRCULAR CYLINDER Noura Alsedais, Sang-Wook Lee, Abdelraheem Aly Porosity Impacts on MHD Casson Fluid past a Shrinking Cylinder with Suction Annuri Shobha, Murugan Mageswari, Aisha M. Alqahtani, Asokan Arulmozhi, Manyala Gangadhar Rao, Sudar Mozhi K, Ilyas Khan CREEPING FLOW OF COUPLE STRESS FLUID OVER A SPHERICAL FIELD ON A SATURATED BIPOROUS MEDIUM Shyamala Sakthivel , Pankaj Shukla, Selvi Ramasamy
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции Цены и условия подписки Begell House Контакты Language English 中文 Русский Português German French Spain