Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Heat Transfer Research
Импакт фактор: 0.404 5-летний Импакт фактор: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Печать: 1064-2285
ISSN Онлайн: 2162-6561

Выпуски:
Том 50, 2019 Том 49, 2018 Том 48, 2017 Том 47, 2016 Том 46, 2015 Том 45, 2014 Том 44, 2013 Том 43, 2012 Том 42, 2011 Том 41, 2010 Том 40, 2009 Том 39, 2008 Том 38, 2007 Том 37, 2006 Том 36, 2005 Том 35, 2004 Том 34, 2003 Том 33, 2002 Том 32, 2001 Том 31, 2000 Том 30, 1999 Том 29, 1998 Том 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2018016611
Forthcoming Article

Experimental Study of Pool Boiling Heat Transfer on Micro-Pin-Finned Surface With Mechanical Oscillation

Jinjia Wei
State Key Lab of multiphase Flow, Xi'an Jiaotong Univerisity
Xin Kong
State Key Lab of multiphase Flow, Xi'an Jiaotong Univerisity
Jie Ding
State Key Lab of multiphase Flow, Xi'an Jiaotong Univerisity
Yonghai Zhang
State Key Lab of multiphase Flow, Xi'an Jiaotong Univerisity

Краткое описание

To further enhance pool boiling heat transfer , an new oscillation device was proposed. An oscillating plate was located over the heater surface with a vertical oscillation amplitude of 20mm and frequency of 6 HZ. Three N-type phosphorus-doped silicon chips were used as heater surfaces. One was smooth surface, and the other two were micro-pin-finned chips having fin thickness of 30 μm and fin height of 60 μm (chip PF30-60). The pin-fin arrays were fabricated with aligned and staggered arrangements respectively. Absolute ethyl alcohol was used as working fluid. The results showed that mechanical oscillation can enhance boiling heat transfer in both convective region and high flux region. The wall superheat showed a considerable decrease of 20-30 ℃ in the convective region by thinning the thermal boundary layer on heater surface, and the critical heat flux could also be increased by 20%. In addition, micro-pin-finned chips showed better performance due to much more fresh liquid supply from the interconnected tunnels formed by micro-pin-fins, which is driven by capillary force.