Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Heat Transfer Research
Импакт фактор: 0.404 5-летний Импакт фактор: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Печать: 1064-2285
ISSN Онлайн: 2162-6561

Выпуски:
Том 50, 2019 Том 49, 2018 Том 48, 2017 Том 47, 2016 Том 46, 2015 Том 45, 2014 Том 44, 2013 Том 43, 2012 Том 42, 2011 Том 41, 2010 Том 40, 2009 Том 39, 2008 Том 38, 2007 Том 37, 2006 Том 36, 2005 Том 35, 2004 Том 34, 2003 Том 33, 2002 Том 32, 2001 Том 31, 2000 Том 30, 1999 Том 29, 1998 Том 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2018019485
pages 159-181

CONTROL OF HEAT TRANSFER AND FLUID FLOW VIA A MOVING FIN IN A TRIANGULAR ENCLOSURE FILLED WITH NANOFLUID

Lioua Kolsi
College of Engineering, Mechanical Engineering Department, Haïl University, Haïl City, Saudi Arabia; Unité de Métrologie et des Systèmes Energétiques, Ecole Nationale d'Ingénieurs, 5000 Monastir, University of Monastir, Tunisia
Hakan F. Öztop
Department of Mechanical Engineering, Technology Faculty, Firat University, Elazig, Turkey; Mechanical Engineering Department, Faculty of Engineering, King Abdulaziz University, P.O. Box 40844, Jeddah 21511, Saudi Arabia
Abdullah A. A. A. Al-Rashed
Department of Automotive and Marine Engineering Technology, College of Technological Studies, Public Authority for Applied Education and Training, Kuwait
Abdelkarim Aydi
Department of Chemical and Materials Engineering, College of Engineering, Northern Border University, P.O. Box 1321, Arar, Saudi Arabia
Borjini Mohamed Naceur
Unité de Métrologie et des Systèmes Energétiques, Ecole Nationale d'Ingénieurs, 5000 Monastir, University of Monastir, Tunisia
Nidal Abu-Hamdeh
Mechanical Engineering Department, Faculty of Engineering, King Abdulaziz University, P.O. Box 40844, Jeddah 21511, Saudi Arabia

Краткое описание

A computational study has been performed to solve the heat transfer and fluid flow problem in a triangular enclosure filled with nanofluids. It also has a moving fin in its top side. Three different cases are considered: a fixed fin (V = 0), a fin rotating clockwise (V+), and a fin rotating counterclockwise (V–). The cavity is heated and cooled from inclined walls and its bottom wall is adiabatic. Three-dimensional governing equations are solved by using the finite volume method. Other governing parameters are the Rayleigh number 103 ≤ Ra ≤ 106 and nanoparticle volume fraction 0.0 ≤ φ ≤ 0.15. It is found that heat transfer can be controlled via both a moving lid and particle addition into the base fluid.


Articles with similar content:

NUMERICAL STUDY ON THE EFFECT OF MAGNETIC FIELD IN A POROUS ENCLOSURE USING NANOFLUID WITH MID-HORIZONTAL MOVING LID: BRINKMAN-FORCHHEIMER EXTENDED DARCY MODEL
Journal of Porous Media, Vol.21, 2018, issue 5
N. Nithyadevi, A. Shamadhani Begum
EFFECT OF MHD ON RAYLEIGH-BENARD CONVECTION
Proceedings of the 24th National and 2nd International ISHMT-ASTFE Heat and Mass Transfer Conference (IHMTC-2017), Vol.0, 2017, issue
Ranjit J. Singh, Trushar Gohil
BUOYANCY OPPOSED MIXED CONVECTION IN A TWO-SIDED LID-DRIVEN DIFFERENTIALLY HEATED SQUARE CAVITY FILLED WITH A POROUS MEDIUM
Journal of Porous Media, Vol.13, 2010, issue 12
Manab Kumar Das, Elaprolu Vishnuvardhanarao
ANALYSIS OF CONVECTIVE HEAT TRANSFER IN A SQUARE CAVITY FILLED WITH A POROUS MEDIUM UNDER A MAGNETIC FIELD
Special Topics & Reviews in Porous Media: An International Journal, Vol.2, 2011, issue 3
M. Sathiyamoorthy
Simulation of natural convection flow in a square cavity by lattice-Boltzmann method within a wide range of Ra
International Heat Transfer Conference 12, Vol.8, 2002, issue
M. X. Li, Ya-Ling He, Qiu-Wang Wang, Wen-Quan Tao