Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Heat Transfer Research
Импакт фактор: 0.404 5-летний Импакт фактор: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Печать: 1064-2285
ISSN Онлайн: 2162-6561

Выпуски:
Том 50, 2019 Том 49, 2018 Том 48, 2017 Том 47, 2016 Том 46, 2015 Том 45, 2014 Том 44, 2013 Том 43, 2012 Том 42, 2011 Том 41, 2010 Том 40, 2009 Том 39, 2008 Том 38, 2007 Том 37, 2006 Том 36, 2005 Том 35, 2004 Том 34, 2003 Том 33, 2002 Том 32, 2001 Том 31, 2000 Том 30, 1999 Том 29, 1998 Том 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2018019748
pages 847-863

NUMERICAL INVESTIGATION OF MELTING OF PARAFFIN WAX DISPERSED WITH CuO NANOPARTICLES INSIDE A SQUARE ENCLOSURE

Muslum Arici
Kocaeli University, Engineering Faculty, Mechanical Engineering Department, Umuttepe Campus, 41380 Kocaeli, Turkey
Ensar Tütüncü
Kocaeli University, Engineering Faculty, Mechanical Engineering Department, Umuttepe Campus, 41380 Kocaeli, Turkey
Antonio Campo
The University of Vermont, Mechanical Engineering Department, Burlington, VT 05405

Краткое описание

In this study, molten paraffin wax dispersed with CuO nanoparticles inside a square enclosure is investigated numerically using the enthalpy–porosity technique. A cosinusoidally varying temperature is imposed on a hot wall, while the facing cold wall is kept at a constant temperature. The other walls in the square enclosure are considered insulated. The temperature and phase-dependent thermophysical properties are incorporated into the governing equations and numerical calculations. The effect of the volume fraction of nanoparticles (φ = 0 vol.%, 1 vol.%, and 3 vol.%) in conjunction with the orientation of the heated wall (heating from a side wall or heating from the bottom) on the melting process are examined. Computed numerical results demonstrated that the melting rate and the stored energy for the case of heating from below is considerably higher than in the case of heating from the side. With dispersion of nanoparticles in the paraffin wax, the melting rate and the stored energy are enlarged more significantly than in the case of heating from the side. A higher enlargement is attained for a nanoparticle volume fraction of φ = 1 vol.% as compared to that of φ = 3 vol.%.

Ключевые слова: energy storage, melting, nanoparticles, PCM, NEPCM

Articles with similar content:

HEAT TRANSFER ENHANCEMENT OF UNIFORMLY/LINEARLY HEATED SIDE WALL IN A SQUARE ENCLOSURE UTILIZING ALUMINA−WATER NANOFLUID
Computational Thermal Sciences: An International Journal, Vol.9, 2017, issue 3
Senthil Kumar Arumugam, Sathiyamoorthy Murugesan, Ali J. Chamkha, Saritha Natesan
NUMERICAL INVESTIGATION OF MELTING PROCESS IN HORIZONTAL SHELL-AND-TUBE PHASE CHANGE MATERIAL STORAGE CONSIDERING DIFFERENT HTF CHANNEL GEOMETRIES
Heat Transfer Research, Vol.48, 2017, issue 16
Adel Dolati, Mojtaba Aghajani Delavar, Seyed Soheil Mousavi Ajarostaghi
MIXED CONVECTION FLOW AND HEAT TRANSFER IN A VENTILATED INCLINED CAVITY CONTAINING HOT OBSTACLES SUBJECTED TO A NANOFLUID
Heat Transfer Research, Vol.45, 2014, issue 4
Seyed Sadegh Mirtalebi Esforjani, Mohammad Akbari, Mohammad Hemmat Esfe, Sina Niazi
MIXED CONVECTION AND ENTROPY GENERATION IN A LID-DRIVEN CAVITY FILLED WITH A HYBRID NANOFLUID AND HEATED BY A TRIANGULAR SOLID
Heat Transfer Research, Vol.49, 2018, issue 17
Muneer A. Ismael, T. Armaghani, Ali J. Chamkha
NATURAL CONVECTION IN NANOFLUID-FILLED SQUARE CHAMBERS SUBJECTED TO LINEAR HEATING ON BOTH SIDES: A NUMERICAL STUDY
Heat Transfer Research, Vol.48, 2017, issue 9
S. Mazrouei Sebdani, P. Tajik, Ali Akbar Abbasian Arani, Mostafa Mahmoodi