Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Heat Transfer Research
Импакт фактор: 0.404 5-летний Импакт фактор: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Печать: 1064-2285
ISSN Онлайн: 2162-6561

Выпуски:
Том 51, 2020 Том 50, 2019 Том 49, 2018 Том 48, 2017 Том 47, 2016 Том 46, 2015 Том 45, 2014 Том 44, 2013 Том 43, 2012 Том 42, 2011 Том 41, 2010 Том 40, 2009 Том 39, 2008 Том 38, 2007 Том 37, 2006 Том 36, 2005 Том 35, 2004 Том 34, 2003 Том 33, 2002 Том 32, 2001 Том 31, 2000 Том 30, 1999 Том 29, 1998 Том 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2016009673
pages 597-607

EFFECTS OF A NONCONDENSABLE GAS ON THE MICROBUBBLE EMISSION BOILING

Jiguo Tang
Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin, Heilongjiang 150001, China; State Key Laboratory of Hydraulics and Mountain River Engineering, College of Hydraulic and Hydra-electric Engineering, Sichuan University, Chengdu, Sichuan, 610207, China
Changqi Yan
Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin, Heilongjiang 150001, China
Licheng Sun
State Key Laboratory of Hydraulics and Mountain River Engineering, College of Hydraulic and Hydra-electric Engineering, Sichuan University, Chengdu, Sichuan, 610207, China
Guangyu Zhu
Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin, Heilongjiang 150001, China

Краткое описание

Experiments on subcooled pool boiling were conducted to study the effects of a noncondensable gas on heat transfer performance and bubble behaviors in the regime of microbubble emission boiling (MEB). Snapshots of bubble behaviors were taken with the aid of a high-speed video camera (Photron: Fastcam SA5). The experimental results show that the noncondensable gas can extend the transition process from nucleate boiling to MEB and enlarge the emitted microbubbles from coalescing bubbles in MEB. A vapor film with a violently waving interface that for a long time covers the heating surface is observed for subcooled boiling of nondegassed water rarely found in the MEB of degassed water. In addition, it is also found that the noncondensable gas can weaken the inertial shock of liquid caused by condensation and may result in a collapse of a vapor bubble. Therefore, according to these findings, it can be considered that the noncondensable gas can tend to inhibit the collapse of a vapor film, resulting in a reduction of the bubble collapse frequency. This may be for this reason that the noncondensable gas could deteriorate the heat transfer performance in the regime of MEB.