Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Heat Transfer Research
Импакт фактор: 1.199 5-летний Импакт фактор: 1.155 SJR: 0.267 SNIP: 0.503 CiteScore™: 1.4

ISSN Печать: 1064-2285
ISSN Онлайн: 2162-6561

Выпуски:
Том 51, 2020 Том 50, 2019 Том 49, 2018 Том 48, 2017 Том 47, 2016 Том 46, 2015 Том 45, 2014 Том 44, 2013 Том 43, 2012 Том 42, 2011 Том 41, 2010 Том 40, 2009 Том 39, 2008 Том 38, 2007 Том 37, 2006 Том 36, 2005 Том 35, 2004 Том 34, 2003 Том 33, 2002 Том 32, 2001 Том 31, 2000 Том 30, 1999 Том 29, 1998 Том 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2018021519
pages 1559-1585

TURBULENT DECAYING SWIRLING FLOW IN A PIPE

V. Aghakashi
Center of Excellence in Energy Conversion (CEEC), School of Mechanical Engineering, Sharif University of Technology, Tehran, 11155-9567, Iran
Mohammad Hassan Saidi
Center of Excellence in Energy Conversion (CEEC), School of Mechanical Engineering, Sharif University of Technology, P.O. Box 11155-9567, Tehran, Iran

Краткое описание

In this work, a solution is applied to investigate the heat transfer characteristics in a pipe with turbulent decaying swirling flow by using the boundary layer integral scheme. The governing equation is solved using the forth-order Runge-Kutta scheme resulting in thermal boundary-layer thickness and dimensionless heat transfer coefficient, namely, the Nusselt number. Both forced- and free-vortex profiles are considered for the tangential velocity component. A comparison of the results obtained for the Nusselt number with available experimental data shows that this scheme has good capability in predicting the heat transfer parameters of swirling flow especially in the entrance region of a pipe. The results of the present work specify that in swirling flow, the forced-vortex velocity profile is more accurate in predicting the heat transfer coefficient as compared with the free-vortex one. Also, the effects of the inlet Reynolds number, inlet swirl intensity, and of the Prandtl number on the thermal boundary-layer thickness and Nusselt number are studied, and it is realized that the variation of these two parameters depends on the inlet Reynolds number, inlet swirl intensity, and the Prandtl number. The results show that increasing the inlet swirl intensity has a strong increasing effect on the heat transfer rate.


Articles with similar content:

ON THE V2-BASED TURBULENCE MODEL FOR FREE-STREAM AND WALL-BOUNDED HIGH-SPEED COMPRESSIBLE FLOWS
International Journal of Fluid Mechanics Research, Vol.46, 2019, issue 6
Alexander M. Molchanov, Ivan M. Platonov, Dmitry S. Yanyshev, Leonid V. Bykov
ENTROPY ANALYSIS OF UNSTEADY MAGNETIC FLOW THROUGH A POROUS PIPE WITH BUOYANCY EFFECTS
Journal of Porous Media, Vol.16, 2013, issue 9
Adetayo S. Eegunjobi, Oluwole Daniel Makinde, Tirivanhu Chinyoka
THE EFFECT OF SWIRLING NUMBER VARIATION ON TURBULENT TRANSPORT AND MIXING PROCESSES IN SWIRLING RECIRCULATING FLOWS: EXPERIMENTAL AND NUMERICAL INVESTIGATIONS
TSFP DIGITAL LIBRARY ONLINE, Vol.2, 2001, issue
Andreas Dreizler, Johannes Janicka, Amsini Sadiki, Stefan Repp, Christoph Schneider
Effect of Inlet Flow Angle on the Flow Characteristics in Chamber
International Journal of Fluid Mechanics Research, Vol.38, 2011, issue 1
A. Abdel-Fattah
OHMIC-VISCOUS DISSIPATION AND SLIP EFFECTS ON NANOFLUID FLOW OVER A STRETCHING CYLINDER WITH SUCTION/INJECTION
Nanoscience and Technology: An International Journal, Vol.9, 2018, issue 2
Manoj Kumar, Ashish Mishra, Alok Kumar Pandey