Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Heat Transfer Research
Импакт фактор: 1.199 5-летний Импакт фактор: 1.155 SJR: 0.267 SNIP: 0.503 CiteScore™: 1.4

ISSN Печать: 1064-2285
ISSN Онлайн: 2162-6561

Выпуски:
Том 51, 2020 Том 50, 2019 Том 49, 2018 Том 48, 2017 Том 47, 2016 Том 46, 2015 Том 45, 2014 Том 44, 2013 Том 43, 2012 Том 42, 2011 Том 41, 2010 Том 40, 2009 Том 39, 2008 Том 38, 2007 Том 37, 2006 Том 36, 2005 Том 35, 2004 Том 34, 2003 Том 33, 2002 Том 32, 2001 Том 31, 2000 Том 30, 1999 Том 29, 1998 Том 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2017018153
pages 189-204

HEAT TRANSFER IN VISCOPLASTIC BOUNDARY-LAYER FLOW FROM A VERTICAL PERMEABLE CONE WITH MOMENTUM AND THERMAL WALL SLIP: NUMERICAL STUDY

Annasagaram Subba Rao
Department of Mathematics, Madanapalle Institute of Technology and Science, Madanapalle — 517325, India
V. Ramachandra Prasad
Department of Mathematics, Madanapalle Institute of Technology and Science, Madanapalle, India
V. Naga Radhika
Department of Mathematics, GITAM University Bangalore Campus, Bangalore — 561203, India
O. Anwar Bég
Fluid Mechanics, Nanosystems and Propulsion, Aeronautical and Mechanical Engineering, School of Computing, Science and Engineering, Newton Building, University of Salford, Manchester M54WT, United Kingdom

Краткое описание

A mathematical model is presented for laminar free convection boundary-layer flow of a Casson viscoplastic non-Newtonian fluid external to a vertical penetrable circular cone in the presence of thermal and hydrodynamic slip conditions. The cone surface is maintained at a nonuniform surface temperature. The boundary layer conservation equations, which are parabolic in nature, are transformed into nondimensional form via appropriate similarity variables, and the emerging boundary-value problem is solved computationally with the second order accurate implicit Keller-box finite-difference scheme. The influence of velocity (momentum) slip, thermal slip, and Casson non-Newtonian parameter on velocity, temperature, skin friction, and Nusselt number are illustrated graphically. Validation of solutions with earlier published work is included. The computations show that the flow near the cone surface is strongly decelerated with increasing momentum slip whereas the temperature and thermal boundary-layer thickness increased. Increasing Casson parameter generally decelerates the flow and also decreases temperatures. Both velocity and thermal boundary-layer thickness are reduced at a higher Prandtl number. The study is relevant to petrochemical engineering (polymer) processing systems.


Articles with similar content:

THERMAL RADIATION EFFECTS ON NON-NEWTONIAN FLUID IN A VARIABLE POROSITY REGIME WITH PARTIAL SLIP
Journal of Porous Media, Vol.19, 2016, issue 4
K. Harshavalli, V. Ramachandra Prasad, Osman Anwar Beg, A. Subba Rao
A Study of Mixed Convection Flow over Stretching Cylinder in Presence of Slip Flow and Thermal Jump Boundary Conditions
International Journal of Fluid Mechanics Research, Vol.43, 2016, issue 4
Gurminder Singh, Upendra Mishra
Effects of Variable Properties on Magnetohydrodinamics Unsteady Mixed-Convection in non-Newtonian Fluid with Variable Surface Temperature
Journal of Porous Media, Vol.12, 2009, issue 5
Nasser S. Elgazery, Nader Y. Abd Elazem
INTERNAL HEAT GENERATION OF DUSTY FLUID THROUGH POROUS MEDIA OVER STRETCHING SHEET
Journal of Porous Media, Vol.21, 2018, issue 9
Deog-Hee Doh, E. Ramya, P. Gokulavani, M. Muthtamilselvan
THERMAL RADIATION EFFECT ON INCLINED ARTERIAL BLOOD FLOW THROUGH A NON-DARCIAN POROUS MEDIUM WITH MAGNETIC FIELD
First Thermal and Fluids Engineering Summer Conference, Vol.17, 2015, issue
Madhu Sharma, R. K. Gaur, Bhupendra K. Sharma