Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Heat Transfer Research
Импакт фактор: 0.404 5-летний Импакт фактор: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Печать: 1064-2285
ISSN Онлайн: 2162-6561

Выпуски:
Том 50, 2019 Том 49, 2018 Том 48, 2017 Том 47, 2016 Том 46, 2015 Том 45, 2014 Том 44, 2013 Том 43, 2012 Том 42, 2011 Том 41, 2010 Том 40, 2009 Том 39, 2008 Том 38, 2007 Том 37, 2006 Том 36, 2005 Том 35, 2004 Том 34, 2003 Том 33, 2002 Том 32, 2001 Том 31, 2000 Том 30, 1999 Том 29, 1998 Том 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2016011093
pages 839-854

EFFECT OF PERIODICALLY ALTERNATING WALL TEMPERATURE ON NATURAL CONVECTION HEAT TRANSFER ENHANCEMENT IN A SQUARE CAVITY FILLED WITH Cu-WATER NANOFLUIDS

Xi Meng
College of Architecture and Urban-Rural Planning, Sichuan Agricultural University, Chengdu 610065, P.R. China
Yan Wang
Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu 610065, P.R. China
Jun Wang
College of Architecture and Environment, Sichuan University
Enshen Long
Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu 610065, P.R. China

Краткое описание

Natural convective heat transfer of copper--water nanofluids in a square enclosure with sinusodally alternating temperature at one vertical wall, relatively low temperature at the opposite sidewall, and adiabatic at the other walls is investigated. The transport equations are solved numerically by finite volume approach using the SIMPLEC algorithm. Calculations are performed for the Rayleigh number from 104 to 106, nanoparticle volume fractions from 0 to 0.2, dimensionless amplitude from 0 to 1.0, and dimensionless frequency from 0.1 to 200. The fluctuating behaviors are found for the flow fields and temperature fields as a result of the alternating temperature. The utilization of nanoparticles enhances heat transfer especially at high Rayleigh numbers, and the percentage increase in the time-averaged Nusselt number is 37.61%, when the solid volume fraction is increased from 0 to 0.2. In addition, the alternating temperature amplitude and frequency affect heat transfer of nanofluids. When the dimensionless amplitude is increased from 0 to 1, the percentage increase in the time-averaged Nusselt number is 12.24%. The double-humped resonance phenomenon of nanofluids heat transfer is observed for variation of the temperature oscillation frequency.


Articles with similar content:

MIXED CONVECTION IN A LID-DRIVEN SQUARE CAVITY FILLED WITH NANOFLUIDS
Nanoscience and Technology: An International Journal, Vol.2, 2011, issue 4
M. Muthtamilselvan, R. Rakkiyappan
ENHANCED MIXED CONVECTION AND HEAT TRANSFER BY NANOFLUID IN VENTILATED SQUARE ENCLOSURE INCLUDING TWO HEAT SOURCES
Computational Thermal Sciences: An International Journal, Vol.7, 2015, issue 1
Hamdi Moumni, Ezeddine Sediki
Natural Convection Heat Transfer in Right Triangular Enclosures with a Cold Inclined Wall and a Hot Vertical Wall
Heat Transfer Research, Vol.42, 2011, issue 3
Mostafa Mahmoodi
NATURAL CONVECTION IN NANOFLUID-FILLED SQUARE CHAMBERS SUBJECTED TO LINEAR HEATING ON BOTH SIDES: A NUMERICAL STUDY
Heat Transfer Research, Vol.48, 2017, issue 9
S. Mazrouei Sebdani, P. Tajik, Ali Akbar Abbasian Arani, Mostafa Mahmoodi
THERMAL MODULATION EFFECTS ON THERMOSOLUTAL CONVECTION IN A VERTICAL BRIDGMAN CAVITY
ICHMT DIGITAL LIBRARY ONLINE, Vol.13, 2008, issue
Elalami A. Semma