Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Heat Transfer Research
Импакт фактор: 0.404 5-летний Импакт фактор: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Печать: 1064-2285
ISSN Онлайн: 2162-6561

Выпуски:
Том 50, 2019 Том 49, 2018 Том 48, 2017 Том 47, 2016 Том 46, 2015 Том 45, 2014 Том 44, 2013 Том 43, 2012 Том 42, 2011 Том 41, 2010 Том 40, 2009 Том 39, 2008 Том 38, 2007 Том 37, 2006 Том 36, 2005 Том 35, 2004 Том 34, 2003 Том 33, 2002 Том 32, 2001 Том 31, 2000 Том 30, 1999 Том 29, 1998 Том 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.v41.i2.30
pages 137-153

Numerical Study of Buoyancy-Opposed Wall Jet Flow

A. Abdel-Fattah
Department of Mechanical Power Engineering, Faculty of Engineering Menoufiya University, Shebin El-Kom

Краткое описание

This paper describes a numerical study of the flow and thermal fields for an opposed wall jet. The hot water is injected from a plane jet down one wall of a vertical passage of a rectangular cross section into cooled water which moves slowly upward. The flow is assumed to be two-dimensional, steady, incompressible, and turbulent. The finite volume scheme is used to solve the continuity equation, momentum equations, energy equation, and k−ε model equations. The flow characteristics were studied by varying the Richardson number (0.0 ≤ Ri ≤ 0.052) and the ratio of background velocity to jet velocity (0.05 ≤ R ≤ 0.15). The results showed that the buoyancy limited the downward penetration of the jet and its lateral spread when the Richardson number increased. The shear layer formed at the interface between the two flow streams, and it became more concentrated at higher values of the Richardson number. In this region, the intensity of the turbulence became stronger and the turbulent shear stress had a minimum value. When the velocity ratio increased, the penetration of jet decreases, its lateral spreading becomes less. Also the temperature difference decreases with the velocity ratio increase. The numerical results give a good agreement with the experiment data of [1].


Articles with similar content:

NUMERICAL SIMULATION OF A TURBULENT FREE JET ISSUING FROM A RECTANGULAR NOZZLE
Computational Thermal Sciences: An International Journal, Vol.4, 2012, issue 1
Mohsen Akbarzadeh, Madjid Birouk, Brahim Sarh
NUMERICAL INVESTIGATION OF THE FLOW FIELD OF A CONFINED TURBULENT IMPINGING JET
Turbulence and Shear Flow Phenomena -1 First International Symposium, Vol.0, 1999, issue
Dinh Vo-Ngoc , Latifa Rezg
NUMERICAL INVESTIGATION OF ROUND TURBULENT SWIRLING JET IMPINGEMENT HEAT TRANSFER FROM A HOT SURFACE
Computational Thermal Sciences: An International Journal, Vol.8, 2016, issue 6
Muhammad Ali Rob Sharif
Ice melting driven by natural convection in the rectangular cavity filled with water
ICHMT DIGITAL LIBRARY ONLINE, Vol.2, 2004, issue
Marija Zivic, Antun Galovic, Zdravko Virag
NUMERICAL INVESTIGATION OF THE FLOW FIELD OF A CONFINED TURBULENT IMPINGING JET
TSFP DIGITAL LIBRARY ONLINE, Vol.1, 1999, issue
Dinh Vo-Ngoc , Latifa Rezg