Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Heat Transfer Research
Импакт фактор: 1.199 5-летний Импакт фактор: 1.155 SJR: 0.267 SNIP: 0.503 CiteScore™: 1.4

ISSN Печать: 1064-2285
ISSN Онлайн: 2162-6561

Выпуски:
Том 51, 2020 Том 50, 2019 Том 49, 2018 Том 48, 2017 Том 47, 2016 Том 46, 2015 Том 45, 2014 Том 44, 2013 Том 43, 2012 Том 42, 2011 Том 41, 2010 Том 40, 2009 Том 39, 2008 Том 38, 2007 Том 37, 2006 Том 36, 2005 Том 35, 2004 Том 34, 2003 Том 33, 2002 Том 32, 2001 Том 31, 2000 Том 30, 1999 Том 29, 1998 Том 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.v43.i4.30
pages 311-326

SOURCES OF ENERGY ABSORPTION OF SPARK DISCHARGE IN DIRECT DETONATION INITIATION

K. V. Korytchenko
Military Training Department of the National Technical University "Kharkov Polytechnic Institute", Kharkov, Ukraine

Краткое описание

The work presents the estimate of the distribution of the spark discharge energy throughout different sources of its absorption for the problem of direct detonation initiation. The estimate is obtained by mathematical simulations of both transient process in the RLC-circuit at nonlinear load and gas dynamic expansion of a spark channel in the reactive mixture. The results of oscilloscope recording and photography of the spark channel served as initial data for mathematical simulation. Discharge energy loss due ohmic heating, loss in near-electrode regions, loss due to dissociation and ionization, as well as loss due to uncontrolled energy supply were taken into account.

Ключевые слова: detonation initiation, spark discharge, energy loss

ЛИТЕРАТУРА

  1. Abramson, I. S. and Gerechkori, N. M. , Oscilloscope recording studies of spark discharge.

  2. Gegechkori, N. M. , Experimental investigation of the spark discharge channel.

  3. Im, K.-S., Kim, C.-K., and Yu, S.-T. J. , Analyses of direct detonation initiation with realistic finiterate chemistry.

  4. Knystautas, R. and Lee, J. H. , On effective energy for direct initiation of gaseous detonations.

  5. Lee, J. H. , Initiation of gaseous detonation.

  6. Levin, V. A., Markov, V. V., and Osinkin, S. F. , Initiation of gas detonation by means of electrical discharge.

  7. Nettleton, M. A. , Detonation in Gases.

  8. Petersen, E. L. and Hanson, R. K. , Reduced kinetics mechanisms for ram accelerator combustion.

  9. Zeldovich, Ya. B., Kogarko, S. M., and Siminov, N. N. , Experimental study of spherical detonation.


Articles with similar content:

Pulse Explosive-Driven Electromagnetic Energy Generators
Telecommunications and Radio Engineering, Vol.65, 2006, issue 16-20
V. A. Soshenko, Oleg Sytnik
A MODEL OF TEMPORAL RADIO SIGNAL DISTORTIONS IN URBAN INFRASTRUCTURE CONDITIONS
Telecommunications and Radio Engineering, Vol.71, 2012, issue 10
S. S. Gromov, V. A. Ivanov, A. A. Arkhipenko, A. V. Subbotenko
KINETICS OF NONEQUILIBRIUM PLASMA IN A STREAM OF AIR
Progress in Plasma Processing of Materials, 2001, Vol.0, 2001, issue
Nail F. Kashapov
MODELING OF THE LAMINAR−TURBULENT TRANSITION BASED ON THE NUMERICAL SOLUTIONS OF UNSTEADY NAVIER−STOKES EQUATIONS
TsAGI Science Journal, Vol.47, 2016, issue 3
Sergei Leonidovich Chernyshev, Andrey Filippovich Kiselev, Valery Viktorovich Vozhdaev, Leonid Leonidovich Teperin, Dmitry Sergeevich Sboev
Contactless Millimeter Wave Band Method for Angular Deformation Control of the Intermediate Shaft of the Power-Generating Unit
Telecommunications and Radio Engineering, Vol.51, 1997, issue 6-7
B. P. Yefimov, A. P. Kasyanenko, O. N. Sukhoruchko