Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Heat Transfer Research
Импакт фактор: 0.404 5-летний Импакт фактор: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Печать: 1064-2285
ISSN Онлайн: 2162-6561

Выпуски:
Том 50, 2019 Том 49, 2018 Том 48, 2017 Том 47, 2016 Том 46, 2015 Том 45, 2014 Том 44, 2013 Том 43, 2012 Том 42, 2011 Том 41, 2010 Том 40, 2009 Том 39, 2008 Том 38, 2007 Том 37, 2006 Том 36, 2005 Том 35, 2004 Том 34, 2003 Том 33, 2002 Том 32, 2001 Том 31, 2000 Том 30, 1999 Том 29, 1998 Том 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2018015790
pages 719-745

NUMERICAL INVESTIGATION OF NATURAL-CONVECTION HEAT TRANSFER CHARACTERISTICS OF Al2O3-WATER NANOFLUID FLOW THROUGH POROUS MEDIA EMBEDDED IN A SQUARE CAVITY

Siva Sai Vadri
Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600036, India
K. Arul Prakash
Fluid Mechanics Laboratory Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600036, India
Arvind Pattamatta
Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai–600036, India

Краткое описание

In this study, natural-convection heat transfer characteristics of Al2O3-water nanofluid flow through a homogeneous porous medium embedded in a square cavity with several pairs of heaters and coolers located inside are investigated numerically. The two-dimensional equations governing the nanofluid flow and heat transfer through the porous medium are discretized using Streamline Upwind Petrov-Galerkin (SUPG) based Finite Element Method (FEM). The generalized Darcy-Brinkman-Forchheimer's porous medium model is used in this analysis. The average Nusselt number in the cases of the base fluid without a porous medium, of a nanofluid without a porous medium, and a nanofluid with a porous medium are compared for different Rayleigh numbers. It is found that in the case of the nanofluid with a porous medium the highest value of average Nusselt number was obtained. In addition to this, the effect of the Darcy number and the porosity on the pattern of streamlines and isotherms is investigated. It is also observed that the average Nusselt number increases with increasing Darcy number and decreases with increasing porosity and nanoparticle volume fraction.


Articles with similar content:

BUOYANCY-DRIVEN HEAT TRANSFER OF WATER−BASED NANOFLUID IN A PERMEABLE CYLINDRICAL PIPE WITH NAVIER SLIP THROUGH A SATURATED POROUS MEDIUM
Journal of Porous Media, Vol.18, 2015, issue 12
Sara Khamis, Oluwole Daniel Makinde, Yaw Nkansah-Gyekye
NATURAL CONVECTION OF A HYBRID NANOFLUID-FILLED TRIANGULAR ANNULUS WITH AN OPENING
Computational Thermal Sciences: An International Journal, Vol.8, 2016, issue 6
Ali J. Chamkha, Fatih Selimefendigil
NUMERICAL INVESTIGATION OF MIXED CONVECTION OF SiO2-WATER NANOFLUIDS WITHIN AN INCLINED DOUBLE LIDS-DRIVEN CAVITY
Heat Transfer Research, Vol.49, 2018, issue 10
M. R. Faridzadeh, J. Amani, Davood Semiromi Toghraie, A. Niroumand, Arash Karimipour
NATURAL CONVECTION HEAT TRANSFER IN A NANOFLUID-FILLED HORIZONTAL LAYER WITH SINUSOIDAL WALL TEMPERATURE AT THE BOTTOM BOUNDARY
Heat Transfer Research, Vol.49, 2018, issue 11
Qiu-Wang Wang, H. Ozoe, Z. L. Fan, G. Wang, Min Zeng
NATURAL CONVECTION FROM A CYLINDER IN SQUARE POROUS ENCLOSURE FILLED WITH NANOFLUIDS
Journal of Porous Media, Vol.18, 2015, issue 6
Habibis Saleh, Ishak Hashim