Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Heat Transfer Research
Импакт фактор: 0.404 5-летний Импакт фактор: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Печать: 1064-2285
ISSN Онлайн: 2162-6561

Выпуски:
Том 50, 2019 Том 49, 2018 Том 48, 2017 Том 47, 2016 Том 46, 2015 Том 45, 2014 Том 44, 2013 Том 43, 2012 Том 42, 2011 Том 41, 2010 Том 40, 2009 Том 39, 2008 Том 38, 2007 Том 37, 2006 Том 36, 2005 Том 35, 2004 Том 34, 2003 Том 33, 2002 Том 32, 2001 Том 31, 2000 Том 30, 1999 Том 29, 1998 Том 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2016005181
pages 291-307

APPLICATION OF A NOVEL LATTICE BOLTZMANN METHOD FOR NUMERICAL SIMULATION OF THREE-DIMENSIONAL TURBULENT NATURAL CONVECTION FLOWS

Ahmad Reza Rahmati
Department of Mechanical Engineering, University of Kashan, Kashan, Iran
Mahmud Ashrafizaadeh
Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran
Ebrahim Shirani
Foolad Institute of Technology, Fooladshahr, Isfahan, 8491663763, Iran

Краткое описание

In the present study, for the first time, LES of the D3Q19 Fractional Volumetric Multi-Relaxation-Time Lattice Boltzmann (FV-MRT-LB) model in conjunction with both Smagorinsky and mixed scale viscosity subgrid closure models is applied to a three-dimensional turbulent natural convection flow in a side-heated cubic cavity at different Rayleigh numbers up to 1012 for a Prantdl number of 0.71. The results show that the (Hybrid Thermal) HT-FV-MRT-LB LES method produce reasonably accurate results at low Rayleigh numbers and stable results at high Rayleigh numbers.

ЛИТЕРАТУРА

  1. Bejan, A., Convection Heat Transfer, New York: Wiley, 1984.

  2. Chen, S. and Doolen, G., Lattice Boltzmann method for fluid flows, Annu. Rev. Fluid Mech., vol. 30, pp. 329–364, 1998.

  3. Eggels, J. G. M., Direct and large-eddy simulation of turbulent flow using the lattice-Boltzmann scheme, Int. J. Heat Fluid Flow, vol. 17, no. 3, pp. 307–323, 1996.

  4. Frost, W. and Moulden, T. H., Handbook of Turbulence, Vol. 1, Fundamentals and Applications, New York: Plenum Press, 1977.

  5. Ghia, U., Ghia, K. N., and Shin, C., High Reynolds solutions for incompressible flow using the Navier–Stokes equations and High Reynolds solutions for incompressible flow using the Navier–Stokes equations and a multi-grid meth a multi-grid method, J. Comput. Phys., vol. 45, pp. 387–411, 1982.

  6. He, X., Chen, S., and Doolen, G. D., A novel thermal model for the lattice Boltzmann method in incompressible limit, J. Comput. Phys., vol. 146, pp. 282–300, 1998.

  7. Krafczyk, M., Tölke, J., and Luo, L. S., Large-eddy simulations with a multiple-relaxation-time LBE model, Int. J. Mod. Phys. B, vol. 17, nos. 1–2, pp. 33–39, 2003.

  8. Lallemand, P. and Luo, L. S., Theory of the lattice Boltzmann method: Acoustic and thermal properties in two and three dimensions, Physi. Rev. E, vol. 68, pp. 036706(1)–036706(25), 2003.

  9. Pan, C., Luo, L. S., and Miller, C.,T. , An evaluation of lattice Boltzmann schemes for porous medium flow simulation, Computers & Fluids, vol. 35, pp.898–909, 2006.

  10. Rahmati, A. R. and Ashrafizaadeh, M., A generalized lattice Boltzmann method for three-dimensional incompressible fluid flow simulation, J. Appl. Fluid Mech., vol. 2, pp. 71–96, 2009.

  11. Rahmati, A. R. and Ashrafizaadeh, M., A new lattice Boltzmann method for simulation of three-dimensional turbulent natural convection flows, Proc. 19th Annual Int. Conf. on Mechanical Engineering, Birjand, Iran, May, 2011.

  12. Rahmati, A. R. and Ashrafizaadeh, M., Performance evaluation of multi relaxation time lattice Boltzmann method for 3D fluid flow simulation, Proc. 15th Annual Int. Conf. on Mechanical Engineering, Tehran, Iran, pp. 173–174, May, 2007.

  13. Rahmati, A. R. and Ashrafizaadeh, M. , Stability Improvement of Lattice Boltzmann Method for Simulation of High Rayleigh Turbulent Thermal Flows, PhD thesis, Isfahan University of Technology, Isfahan, Iran, 2010.

  14. Rahmati, A. R. and Niazi, S., A multi relaxation time lattice Boltzmann method for simulation of flow in micro devices, Proc. 19th Annual Int. Conf. on Mechanical Engineering, Birjand, Iran, May, 2011a.

  15. Rahmati, A. R. and Niazi, S. , Application of a lattice Boltzmann method on non-uniform meshes for simulation of micro flow, Proc. 10th Iranian Aerospace Society Conf., Tehran, Iran, March,2011b.

  16. Rahmati, A. R. and Niazi, S., Application of entropic lattice Boltzmann method for simulation of micro flows, Proc. 10th Iranian Aerospace Society Conf., Tehran, Iran, March, 2011c.

  17. Rahmati, A. R. and Niazi, S., Numerical simulation of thermal micro flow using double density distributed function lattice Boltzmann method, Proc. 10th Iranian Aerospace Society Conf., Tehran, Iran, March, 2011d.

  18. Rahmati, A. R., Ashrafizaadeh, M., and Shirani, E., Convective flow simulation by using two hybrid finite-difference thermal lattice Boltzmann models, Book of Extended Abstracts of the 5th Int. Conf. for Mesoscopic Methods in Engineering and Science (ICMMES), Amsterdam, The Netherlands, June, 2008a.

  19. Rahmati, A. R., Ashrafizaadeh, M., and Shirani, E., Improvement of numerical instability of lattice Boltzmann methods using various techniques, Proc. 16th Annual Int. Conf. on Mechanical Engineering, Kerman, Iran, pp. 115–116, May, 2008b.

  20. Rahmati, A. R., Ashrafizaadeh, M., and Shirani, E., Incompressible multi-relaxation-time LBM with non-uniform mesh for LES of Rayleigh–Bénard convection flow, Proc. 12th Asian Congress of Fluid Mechanics, Daejeon, Korea, p. 54, August, 2008c.

  21. Rahmati, A. R., Ashrafizaadeh, M., and Shirani, E., Multi-relaxation-time lattice Boltzmann method for LES of turbulent flows, Proc. 11th Fluid Dynamics Conf., Tehran, Iran, p. 8, May, 2008d.

  22. Rahmati, A. R., Ashrafizaadeh, M., and Shirani, E. , Natural convection simulation by using two thermal lattice Boltzmann models, Proc. 16th Annual Int. Conf. on Mechanical Engineering, Kerman, Iran, pp. 109–110, May, 2008e.

  23. Rahmati, A. R., Ashrafizaadeh, M., and Shirani, E., Novel hybrid finite-difference thermal lattice Boltzmann models for convective flows, Heat Transfer Research, vol. 40, no. 8, pp. 747–775, 2009.

  24. Rahmati, A. R., Ashrafizaadeh, M., and Shirani, E., Numerical instability analysis of the lattice Boltzmann equations methods using different schemes, Proc. 12th Asian Congress of Fluid Mechanics, Daejeon, Korea, p. 33, August, 2008f.

  25. Rahmati, A. R., Ashrafizaadeh, M., and Shirani, E., Numerical simulation of viscous flows using an incompressible lattice Boltzmann method on non-uniform grids, Proc. 7th Iranian Aerospace Society Conf., Tehran, Iran, pp. 43-44, February, 2008g.

  26. Rahmati, A. R., Niazi, S., and Naderi Beni, M., An incompressible generalized lattice Boltzmann method for increasing heat transfer with nanofluids in a square cavity, Proc. 7th Int. Conf. on Computational Heat and Mass Transfer, Istanbul, Turkey Yeditepe Universitesi, July, 2011a.

  27. Rahmati, A. R., Niazi, S., and Naderi Beni, M., Gas flow simulation in micro tubes using a multi-relaxation-time lattice Boltzmann method, Proc. 7th Int. Conf. on Computational Heat and Mass Transfer, Istanbul, Turkey, Yeditepe Universitesi July, 2011b.

  28. Sergent, A., Joubert, P., and Le Quéré, P., Large eddy simulation of turbulent thermal convection using a mixed scale diffusivity model, Prog. Comput. Fluid Dynam., vol. 6, nos. 1–3, pp. 40–49, 2006.

  29. Teixeira, C., Chen, H., and Freed, D. M., Multispeed thermal lattice Boltzmann method stabilization via equilibrium underrelaxation, Comput. Phys. Comm., vol. 129, pp. 207–226, 2000.

  30. Tric, E., Labrosse, G., and Betrouni, M. , A first incursion into the 3D structure of natural convection of air in a differentially heated cubic cavity, from accurate numerical solutions, Int. J. Heat Mass Transfer, vol. 43, pp. 4043–4056, 2000.

  31. Yu, H., Girimaji, S., and Luo, L. S., LES of turbulent square jet flow using an MRT lattice Boltzmann model, Comput. Fluids, vol. 35, pp. 957–965, 2006.


Articles with similar content:

Novel Hybrid Finite-Difference Thermal Lattice Boltzmann Models for Convective Flows
Heat Transfer Research, Vol.40, 2009, issue 8
Mahmud Ashrafizaadeh, Ebrahim Shirani, Ahmad Reza Rahmati
Direct Numerical Simulations of Turbulent Natural Convection in a Differentially Heated Cavity of Aspect Ratio 4 at Rayleigh numbers 6.4 × 108, 2 × 109 and 1010
ICHMT DIGITAL LIBRARY ONLINE, Vol.10, 2006, issue
O. Lehmkuhl, M. Soria, Assensi Oliva, F. Xavier Trias
Large Eddy Simulation of Turbulent Natural Convection Flows in Cavities
International Heat Transfer Conference 12, Vol.8, 2002, issue
Patrick Le Quere, Anne Sergent, Patrice Joubert
Towards High-Performance Thermal Flow Solvers based on the Link-Wise Artificial Compressibility Method
International Heat Transfer Conference 15, Vol.36, 2014, issue
Jean-Jacques Roux, Christian Obrecht, Frederic Kuznik, Gilles Rusaouen
LARGE EDDY SIMULATION OF THE FLOW IN A BLADED DIFFUSER
Turbulence and Shear Flow Phenomena -1 First International Symposium, Vol.0, 1999, issue
Doru Caraeni, Laszlo Fuchs, Stephen Conway