Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Heat Transfer Research
Импакт фактор: 0.404 5-летний Импакт фактор: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Печать: 1064-2285
ISSN Онлайн: 2162-6561

Выпуски:
Том 50, 2019 Том 49, 2018 Том 48, 2017 Том 47, 2016 Том 46, 2015 Том 45, 2014 Том 44, 2013 Том 43, 2012 Том 42, 2011 Том 41, 2010 Том 40, 2009 Том 39, 2008 Том 38, 2007 Том 37, 2006 Том 36, 2005 Том 35, 2004 Том 34, 2003 Том 33, 2002 Том 32, 2001 Том 31, 2000 Том 30, 1999 Том 29, 1998 Том 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2014006434
pages 447-464

ANALYTICAL SOLUTION OF THE PROBLEM OF NON-FOURIER HEAT CONDUCTION IN A SLAB USING THE SOLUTION STRUCTURE THEOREMS

Mohammad Akbari
Department of Mechanical Engineering, Semnan University, Semnan, Iran
Seyfolah Saedodin
Department of Mechanical Engineering, Semnan University, Semnan, Iran
Davood Semiromi Toghraie
Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr, Iran
Farshad Kowsary
Department of Mechanical Engineering, University College of Engineering, University of Tehran, Tehran 515-14395, Iran

Краткое описание

This paper studies an analytical method which combines the superposition technique along with the solution structure theorem such that a closed-form solution of the hyperbolic heat conduction equation can be obtained by using the fundamental mathematics. In this paper, the non-Fourier heat conduction in a slab at whose a left boundary there is a constant heat flux and at the right boundary, a constant temperature Ts = 15, has been investigated. The complicated problem is split into multiple simpler problems that in turn can be combined to obtain a solution to the original problem. The original problem is divided into five subproblems by setting the heat generation term, the initial conditions, and the boundary conditions for different values in each subproblem. All the solutions given in this paper can be easily proven by substituting them into the governing equation. The results show that the temperature will start retreating at approximately t = 2 and for t = 2 the temperature at the left boundary decreases leading to a decrease in the temperature in the domain. Also, the shape of the profiles remains nearly the same after t = 4. The solution presented in this study can be used as benchmark problems for validation of future numerical methods.


Articles with similar content:

AN ANALYTICAL SOLUTION OF NON-FOURIER HEAT CONDUCTION IN A SLAB WITH NONHOMOGENEOUS BOUNDARY CONDITIONS USING THE SUPERPOSITION TECHNIQUE AND SOLUTION STRUCTURE THEOREM
Heat Transfer Research, Vol.45, 2014, issue 7
Davood Semiromi Toghraie, M. Akbari, Farshad Kowsary, Seyfolah Saedodin
EXACT ANALYTICAL SOLUTIONS FOR VERIFICATION OF NUMERICAL CODES IN TRANSIENT HEAT CONDUCTION
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2012, issue
Filippo de Monte, James V. Beck
SHAPE FUNCTIONS GENERATION WITH Mathematica
Hybrid Methods in Engineering, Vol.1, 1999, issue 1
Mikhail D. Mikhailov
TEMPERATURES IN SEMI-INFINITE BODY HEATED BY CONSTANT HEAT FLUX OVER HALF SPACE
International Heat Transfer Conference 7, Vol.2, 1982, issue
James V. Beck , B. Litkouhi
PLATE-FIN HEAT SINK WITH TRANSIENT HEAT SOURCES
International Heat Transfer Conference 13, Vol.0, 2006, issue
Reijo Karvinen, Antti Lehtinen