Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Heat Transfer Research
Импакт фактор: 0.404 5-летний Импакт фактор: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Печать: 1064-2285
ISSN Онлайн: 2162-6561

Выпуски:
Том 50, 2019 Том 49, 2018 Том 48, 2017 Том 47, 2016 Том 46, 2015 Том 45, 2014 Том 44, 2013 Том 43, 2012 Том 42, 2011 Том 41, 2010 Том 40, 2009 Том 39, 2008 Том 38, 2007 Том 37, 2006 Том 36, 2005 Том 35, 2004 Том 34, 2003 Том 33, 2002 Том 32, 2001 Том 31, 2000 Том 30, 1999 Том 29, 1998 Том 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2016011839
pages 221-238

HEAT TRANSFER IN NANOFLUID MHD FLOW IN A CHANNEL WITH PERMEABLE WALLS

Mehdi Fakour
Young Researchers and Elites Club, Sari Branch, Islamic Azad University, Sari, Iran
D.D. Ganji
Department of Mechanical Engineering, Sari Branch, Islamic Azad University, Sari, Iran
A. Khalili
Department of Mechanical Engineering, Iran University, Tehran, Iran
A. Bakhshi
Department of Mechanical Engineering, Babol University of Science and Technology, Babol, Iran

Краткое описание

In this paper, heat transfer in laminar flow in a channel with permeable walls in the presence of a transverse magnetic field is investigated. The Least Square Method (LSM) is used for solving approximate nonlinear differential equations governing the problem. We have tried to show reliability and performance of the present method compared with the Runge−Kutta numerical method (fourth-rate) to solve this problem. The influence of the four dimensionless numbers: the Hartmann number, Reynolds number, Prandtl number, and the Eckert number on nondimensional velocity and temperature profiles are considered. The results show that the present analytical method is very close to the numerical method. In general, increasing the Reynolds and Hartman numbers reduces the nanofluid flow velocity in the channel and the maximum value of temperature increase and increasing the Prandtl and Eckert number will increase the maximum value of temperature.


Articles with similar content:

A SPECTRAL METHOD APPROACH FOR ROLE OF SORET AND VISCOUS DISSIPATION OVER A TRUNCATED CONE IN MICROPOLAR FLUID SATURATED NON-DARCY POROUS MEDIUM WITH MAGNETIC FIELD EFFECT
Special Topics & Reviews in Porous Media: An International Journal, Vol.8, 2017, issue 3
T. Pradeepa, Chetteti RamReddy
STAGNATION-POINT FLOW AND HEAT TRANSFER OVER A HYPERBOLIC STRETCHING SHEET
Heat Transfer Research, Vol.48, 2017, issue 9
Irfan Mustafa, Tariq Javed
SORET AND DUFOUR EFFECTS ON RADIATION ABSORPTION FLUID IN THE PRESENCE OF EXPONENTIALLY VARYING TEMPERATURE AND CONCENTRATION IN A CONDUCTING FIELD
Special Topics & Reviews in Porous Media: An International Journal, Vol.7, 2016, issue 2
E. Keshava Reddy, M. C Raju, S. Harinath Reddy
THERMAL CHARACTERISTICS OF NON-NEWTONIAN THIRD GRADE FLUID FLOW THROUGH TWO PARALLEL PLATES WITH VISCOUS DISSIPATION
Proceedings of the 24th National and 2nd International ISHMT-ASTFE Heat and Mass Transfer Conference (IHMTC-2017), Vol.0, 2017, issue
Sumanta Chaudhuri, Hemant Tiwari, Satyabrata Sahoo
MHD FLOW INSIDE A STRETCHING/SHRINKING CONVERGENT/DIVERGENT CHANNEL WITH HEAT GENERATION/ABSORPTION AND VISCOUS-OHMIC DISSIPATION UTILIZING CU−WATER NANOFLUID
Computational Thermal Sciences: An International Journal, Vol.10, 2018, issue 5
Manoj Kumar, Alok Kumar Pandey