Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Heat Transfer Research
Импакт фактор: 0.404 5-летний Импакт фактор: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Печать: 1064-2285
ISSN Онлайн: 2162-6561

Выпуски:
Том 50, 2019 Том 49, 2018 Том 48, 2017 Том 47, 2016 Том 46, 2015 Том 45, 2014 Том 44, 2013 Том 43, 2012 Том 42, 2011 Том 41, 2010 Том 40, 2009 Том 39, 2008 Том 38, 2007 Том 37, 2006 Том 36, 2005 Том 35, 2004 Том 34, 2003 Том 33, 2002 Том 32, 2001 Том 31, 2000 Том 30, 1999 Том 29, 1998 Том 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2016008318
pages 9-22

FREE CONVECTION IN NON-NEWTONIAN POWER-LAW FLUIDS ALONG A VERTICAL PLATE WITH VARIABLE VISCOSITY AND THERMAL STRATIFICATION IN THE PRESENCE OF INTERNAL HEAT GENERATION

M. B. K. Moorthy
Department of Mathematics, Institute of Road and Transport Technology, Erode − 638316, Tamil Nadu, India
Kannan Thangavelu
SASTRA University
K. Senthilvadivu
Department of Mathematics, K. S. Rangasamy College of Technology, T. Gode − 637215, Tamil Nadu, India

Краткое описание

An investigation has been carried out to discuss the effects of variable viscosity and thermal stratification in the presence of internal heat generation on free convection flow along a nonisothermal vertical plate. The plate is semi-infinite and embedded in a porous medium which is saturated with a non-Newtonian power-law fluid. The governing equations of continuity, momentum, and energy are transformed into nonlinear ordinary differential equations using similarity transformations. The Runge−Kutta−Gill method and shooting technique are employed to solve the resulting equations. For the nonisothermal plate, the heat transfer rate increases as θc → 0 for liquids, whereas it decreases for gases as θc → 0 due to the thermal stratification in the presence of internal heat generation. The velocity decreases near the plate and increases away from the plate as θc → 0 for gases. In the case of liquids, the result is reversed. The obtained results are depicted graphically for different parameters involved.


Articles with similar content:

THERMAL RADIATION EFFECTS ON MHD FLOW OVER A STRETCHING CYLINDER IN A POROUS MEDIUM
Heat Transfer Research, Vol.44, 2013, issue 8
Tariq Javed, Abid Majeed, Zaheer Abbas
SUCTION AND BLOWING EFFECTS ON UNSTEADY FLOW AND HEAT TRANSFER THROUGH POROUS MEDIA WITH VARIABLE VISCOSITY
Journal of Porous Media, Vol.15, 2012, issue 3
Asif Ali, Saira Husnain, Ahmer Mehmood, O. Anwar Bég
LOCAL NONSIMILARITY SOLUTION ON MHD CONVECTIVE HEAT TRANSFER FLOW PAST A POROUS WEDGEIN THE PRESENCE OF SUCTION/INJECTION
Journal of Porous Media, Vol.13, 2010, issue 5
Azme B Khamis, Muhaimin
DUFOUR–SORET AND THERMOPHORETIC EFFECTS ON MAGNETOHYDRODYNAMIC MIXED CONVECTION CASSON FLUID FLOW OVER A MOVING WEDGE AND NON-UNIFORM HEAT SOURCE/SINK
International Journal of Fluid Mechanics Research, Vol.45, 2018, issue 1
Shalini Jain, Rakesh Choudhary
MHD FLOW AND HEAT TRANSFER IN A CASSON FLUID OVER A NONLINEARLY STRETCHING SHEET WITH NEWTONIAN HEATING
Heat Transfer Research, Vol.49, 2018, issue 12
Abid Hussanan, Mohd Zuki Salleh, Hamzeh Taha Alkasasbeh, Ilyas Khan