Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Heat Transfer Research
Импакт фактор: 0.404 5-летний Импакт фактор: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Печать: 1064-2285
ISSN Онлайн: 2162-6561

Выпуски:
Том 50, 2019 Том 49, 2018 Том 48, 2017 Том 47, 2016 Том 46, 2015 Том 45, 2014 Том 44, 2013 Том 43, 2012 Том 42, 2011 Том 41, 2010 Том 40, 2009 Том 39, 2008 Том 38, 2007 Том 37, 2006 Том 36, 2005 Том 35, 2004 Том 34, 2003 Том 33, 2002 Том 32, 2001 Том 31, 2000 Том 30, 1999 Том 29, 1998 Том 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2012005899
pages 591-614

RADIATIVE HEAT TRANSFER IN A MULTILAYER SEMITRANSPARENT SCATTERING MEDIUM USING THE PN−APPROXIMATION METHOD

Bin Liu
School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P.R. China
Yuan Yuan
School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P.R. China
Hong-Liang Yi
School of Energy Science and Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, P. R. China
Shi-Kui Dong
School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P.R. China
Heping Tan
Key Laboratory of Aerospace Thermophysics of MIIT, School of Energy Science of Engineering, Harbin Institute of Technology, Harbin 150001, China

Краткое описание

In this paper, a numerical method is developed to be used in calculations of infrared radiative transfer in participating media with particles. The decomposition of the radiative transfer equation is made using the spherical harmonics (PN-approximation) method, and a multilayer radiative transfer model based on the arbitrary-order PN-approximation method is established. With the coupled radiative−conductive heat transfer model, the calculation accuracy of the high-order PN-approximation method is established through comparison with theoretical solutions. The comparison shows that the arbitrary-order PN-approximation method yields results for nonlinear an-isotropic scattering with a high degree of accuracy. The multilayer radiative transfer model is well-suited in solving atmospheric infrared transmission problems. The influence of different scattering phase functions on the infrared transmission is analyzed within the multilayer medium. The results show that the influence of anisotropic scattering is similar to that of isotropic scattering in a steady state for optically thin media; the influence of nonlinear anisotropic scattering shows a clear linear dependence on the optical thickness in an unsteady state. With increase in the optical thickness, the apparent directional emissivity decreases.


Articles with similar content:

RADIATION TRANSFER IN FIBROUS MEDIA WITH LARGE SIZE PARAMETER
ICHMT DIGITAL LIBRARY ONLINE, Vol.7, 1995, issue
Yasuo Kurosaki, Jun Yamada
THE INVERSE PROBLEM OF DETERMINING THE TEMPERATURE DEPENDENCE OF HEMISPHERICAL TOTAL EMISSIVITY
TsAGI Science Journal, Vol.49, 2018, issue 6
Valerii Mikhailovich Yudin , Dmitrii Viktorovich Bugrov
HIGHER-ORDER SPHERICAL HARMONICS TO MODEL RADIATION IN DIRECT NUMERICAL SIMULATION OF TURBULENT REACTING FLOWS
Computational Thermal Sciences: An International Journal, Vol.1, 2009, issue 2
Kshitij V. Deshmukh, Daniel C. Haworth
FLOW THROUGH ANISOTROPIC POROUS MEDIUM WITH MULTISCALE LOG-NORMAL CONDUCTIVITY
Journal of Porous Media, Vol.13, 2010, issue 2
E. P. Kurochkina, O. N. Soboleva
HIGHER-ORDER SPHERICAL HARMONICS TO MODEL RADIATION IN DIRECT NUMERICAL SIMULATION OF TURBULENT REACTING FLOWS
ICHMT DIGITAL LIBRARY ONLINE, Vol.13, 2008, issue
Kshitij V. Deshmukh