Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Heat Transfer Research
Импакт фактор: 1.199 5-летний Импакт фактор: 1.155 SJR: 0.267 SNIP: 0.503 CiteScore™: 1.4

ISSN Печать: 1064-2285
ISSN Онлайн: 2162-6561

Том 51, 2020 Том 50, 2019 Том 49, 2018 Том 48, 2017 Том 47, 2016 Том 46, 2015 Том 45, 2014 Том 44, 2013 Том 43, 2012 Том 42, 2011 Том 41, 2010 Том 40, 2009 Том 39, 2008 Том 38, 2007 Том 37, 2006 Том 36, 2005 Том 35, 2004 Том 34, 2003 Том 33, 2002 Том 32, 2001 Том 31, 2000 Том 30, 1999 Том 29, 1998 Том 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.v40.i8.10
pages 717-727

Incremental Heat Conduction Versus Mass Reduction in Large Corrugated Walls Derived from a Large Plane Wall

Antonio Campo
Department of Mechanical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, USA
Justin E. Robbins
Department of Mechanical Engineering, The University of Vermont, Burlington, VT 05405, USA

Краткое описание

A conventional large plane wall of thickness H is equivalent to a cluster of stackable square modules of side H with a hot left side, a cold right side, and insulated top and bottom sides (or planes of symmetry). When the two vertical sides of a primary square module are bent inward symmetrically, various kinds of scalloped modules (inscribed in the square module) could be formed depending upon the levels of curvature. Correspondingly, a collection of large corrugated walls can be built consisting of stackable scalloped modules. The heat conduction across any secondary scalloped module is intrinsically two-dimensional, in contrast to the heat conduction across a primary square module that is one-dimensional. As a "proof-of-concept", the governing heat conduction equation in two dimensions is solved numerically with the Finite Element Method under the COMSOL platform for three pre-selected derived modules with different degrees of scallopness. The heat conduction enhancement of the three scalloped modules is contrasted against the basic square module, taking into account concurrently the beneficial mass reduction.


  1. P. J. Schneider, Conduction Heat Transfer.

  2. H. S. Carslaw and J. Ñ Jaeger, Conduction of Heat in Solids.

  3. V. Arpaci, Conduction Heat Transfer.

  4. A. V. Luikov, Analytical Heat Diffusion Theory.

  5. G. E. Myers, Analytical Methods in Conduction Heat Transfer.

  6. U. Grigull and H. Sanders, Heat Conduction.

  7. S. Kakac and Y. Yener, Heat Conduction.

  8. M. N. Ozisik, Heat Conduction.

  9. D. Poulikakos, Conduction Heat Transfer.

  10. J. Taler and P. Duda, Solving Direct and Inverse Heat Conduction Problems.

  11. J. E. Sunderland and K. R. Johnson, Shape factors for heat conduction through bodies with isothermal boundaries.

  12. E. Hahne and U. Grigull, Formfaktor und Formwiderstand der stationaren mehrdimensionalen Warmeleitung.

  13. ASHRAE Handbook of Fundamentals.

  14. D. W. Pepper and J. C. Heinrich, The Finite Element Method: Concepts and Applications.

  15. I. Langmuir, E. Q. Adams, and G. S. Meikle, Flow of heat through furnace walls: the shape factor.

Articles with similar content:

Extension of the Method of Cross Sections to the Problem of Wave Propagation in an Elastic Layer with Smoothly Varying Parameters
International Journal of Fluid Mechanics Research, Vol.26, 1999, issue 5-6
B. V. Galanenko
Special Topics & Reviews in Porous Media: An International Journal, Vol.6, 2015, issue 2
Terrence W. Simon, Perry Y. Li, Chao Zhang, James D. Van de Ven
International Heat Transfer Conference 7, Vol.2, 1982, issue
Richard N. Smith, James D. Koch
Slot Array as a Coupling Element for Quasi-Optical Resonator with a Single-Mode Rectangular Waveguide
Telecommunications and Radio Engineering, Vol.55, 2001, issue 3
V. A. Karpovich, V. N. Rodionova, G. Ya. Slepyan
Numerical Modeling of Three Dimensional Heat Transfer and Fluid Flow Through Interrupted Plates Using Unit Cell Scale
International Heat Transfer Conference 15, Vol.40, 2014, issue
Terrence W. Simon, Perry Y. Li, Chao Zhang, James D. Van de Ven