Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Critical Reviews™ in Therapeutic Drug Carrier Systems
Импакт фактор: 2.9 5-летний Импакт фактор: 3.72 SJR: 0.573 SNIP: 0.551 CiteScore™: 2.43

ISSN Печать: 0743-4863
ISSN Онлайн: 2162-660X

Выпуски:
Том 36, 2019 Том 35, 2018 Том 34, 2017 Том 33, 2016 Том 32, 2015 Том 31, 2014 Том 30, 2013 Том 29, 2012 Том 28, 2011 Том 27, 2010 Том 26, 2009 Том 25, 2008 Том 24, 2007 Том 23, 2006 Том 22, 2005 Том 21, 2004 Том 20, 2003 Том 19, 2002 Том 18, 2001 Том 17, 2000 Том 16, 1999 Том 15, 1998 Том 14, 1997 Том 13, 1996 Том 12, 1995

Critical Reviews™ in Therapeutic Drug Carrier Systems

DOI: 10.1615/CritRevTherDrugCarrierSyst.v27.i1.10
pages 1-83

The Role of Surface Functionalization in the Design of PLGA Micro- and Nanoparticles

Gerda Ratzinger
Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Life Sciences, University of Vienna, Vienna, Austria
Christian Fillafer
Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Life Sciences, University of Vienna, Vienna, Austria
Vera Kerleta
Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Life Sciences, University of Vienna, Vienna, Austria
Michael Wirth
Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Life Sciences, University of Vienna, Vienna, Austria
Franz Gabor
Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Life Sciences, University of Vienna, Austria

Краткое описание

Nano- and microcarriers prepared from the biocompatible and biodegradable polymer poly(D,L-lactide-co-glycolide) (PLGA) are being extensively studied for drug-delivery purposes. Apart from size, their fate in the body is mainly determined by surface characteristics that govern the interaction of the particles with their environment. The present review provides an overview of the currently established concepts for the surface functionalization of particles made from PLGA. In the frst part, a concise description of the material-borne surface features and the related functionalization strategies are given, followed by current methods for the physical and chemical characterization of the particle surface. The second part highlights the aims of functionalization, which include improved drug delivery, vaccination, and imaging. Targeting approaches for site-specifc delivery of drug-loaded particles to certain tissues or even to intracellular targets are presented, as well as stealth coatings for a prolonged blood circulation, labeling methods for imaging purposes, and strategies for the immobilization of macromolecular drugs on the particle surface. Finally, present limitations and future challenges will be discussed, with a focus on the surface-modification procedure and essential demands on functional particulate systems posed by the dynamic and complex in vivo environment.


Articles with similar content:

PLGA Nanoparticles in Drug Delivery: The State of the Art
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.21, 2004, issue 5
Sarita Hariharan, Indu Bala, M. N. V. Ravi Kumar
Ligand-Appended BBB-Targeted Nanocarriers (LABTNs)
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.32, 2015, issue 2
Ankit Jain, Sanjay Kumar Jain
Lipid Nanoparticles for Nasal/Intranasal Drug Delivery
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.34, 2017, issue 3
S. Cunha, M. H. Amaral, J. M. Sousa Lobo, Ana C. Silva
Transcending the Skin Barrier to Deliver Peptides and Proteins Using Active Technologies
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.29, 2012, issue 4
Haripriya Kalluri, Anushree Herwadkar, Neha Singh, Ajay K. Banga, Advait Badkar
Self-Emulsifying Drug Delivery Systems (SEDDS): Formulation Development, Characterization, and Applications
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.26, 2009, issue 5
Shantanu Bandopadhyay, Ramandeep Singh, Bhupinder Singh, Rishi Kapil, Om Parkash Katare