Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Critical Reviews™ in Therapeutic Drug Carrier Systems
Импакт фактор: 2.9 5-летний Импакт фактор: 3.72 SJR: 0.736 SNIP: 0.818 CiteScore™: 4.6

ISSN Печать: 0743-4863
ISSN Онлайн: 2162-660X

Том 37, 2020 Том 36, 2019 Том 35, 2018 Том 34, 2017 Том 33, 2016 Том 32, 2015 Том 31, 2014 Том 30, 2013 Том 29, 2012 Том 28, 2011 Том 27, 2010 Том 26, 2009 Том 25, 2008 Том 24, 2007 Том 23, 2006 Том 22, 2005 Том 21, 2004 Том 20, 2003 Том 19, 2002 Том 18, 2001 Том 17, 2000 Том 16, 1999 Том 15, 1998 Том 14, 1997 Том 13, 1996 Том 12, 1995

Critical Reviews™ in Therapeutic Drug Carrier Systems

DOI: 10.1615/CritRevTherDrugCarrierSyst.2018025589
pages 305-371

Theranostic Nanostructures for Ovarian Cancer

Bankuru Navyatha
Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad U.P., India
Seema Nara
Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad U.P., India

Краткое описание

Ovarian cancer (OC) has emerged as one of the leading causes of death in women due to the lack of early-stage diagnosis resulting in impairment and delay in treatment of malignancy, which raises the morality rate. Existing diagnostic (pelvic examination, CA125, and enzyme-linked immunosorbent assay) or therapeutic modalities (radiotherapy, abdominal pelvic radiation therapy, and chemotherapy) are insufficient to decrease the 5-year survival rate. Nanoparticles (NPs) have been extensively explored as probes for imaging or therapy of cancer. As an extension of this, probes have been designed to possess both imaging and therapeutic modality in a single molecule and this has emerged as the science of nanotheranostics. This review presents the existing diagnostic and therapeutic strategies in use for OC and discusses their loopholes that limit the prognosis of OC. The review presents a general description of important properties of nanostructures and the type of nanostructures that have been used as imaging/therapeutic probe in cancer. The state-of-the-art nanotheranostics probe for targeting OC is presented. Systematic and complete studies that can correlate the findings of researchers from different global areas are lacking. The current status of nanostructures in various phases of clinical trials and those approved by U.S. Food and Drug Administration (FDA) has been presented. No specific targeted theranostic probe for OC has yet been approved by the FDA. Here, the underlying reasons and the challenges faced for nanotheranostics of OC are discussed, along with its future prospects.


  1. American Cancer Society. Cancer facts and figures; 2019. [cited 2019 May 2]. Available from: https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2019/cancer-facts-and-figures-2019.pdf.

  2. Ferraro S, Braga F, Lanzoni M, Boracchi P, Biganzoli EM, Panteghini M. Serum human epididymis protein 4 vs carbohydrate antigen 125 for ovarian cancer diagnosis. J Clin Pathol. 2013;66(4): 273-81.

  3. Hunn J, Rodriguez GC. Ovarian cancer: etiology, risk factors, and epidemiology. Clin Obstet Gynecol. 2012;55(1):3-23.

  4. Wentzensen N, Poole EM, Trabert B, White E, Arslan AA, Patel AV, Setiawan VW, Visvanathan K, Weiderpass E, Adami HO, Black A, Bernstein L, Brinton LA, Buring J, Butler LM, Chamosa S, Clendenen TV, Dossus L, Fortner R, Gapstur SM, Gaudet MM, Gram IT, Hartge P, Bolton JH, Idahl A, Jones M, Kaaks R, Kirsh V, Koh WP, Lacey JVJr, Lee IM, Lundin E, Merritt MA, N Onland-Mo- ret C, Peters U, Poynter JN, Rinaldi S, Robien K, Rohan T, Sandler DP, Schairer C, Schouten LJ, Sjoholm LK, Sieri S, Swerdlow A, Tjonneland A, Travis R, Trichopoulou A, van den Brandt PA, Wilkens L, Wolk A, Yang HP, Jacquotte AZ, Tworoger SS. Ovarian cancer risk factors by histologic subtype: an analysis from the ovarian cancer cohort consortium. J Clin Oncol. 2016;34(24):2888-98.

  5. Janib SM, Moses AS, MacKay JA. Imaging and drug delivery using theranostic nanoparticles. Adv Drug Deliv Rev. 2010;62(11):1052-63.

  6. Muthu MS, Leong DT, Mei L, Feng SS. Nanotheranostics: application and further development of nanomedicine strategies for advanced theranostics. Theranostics. 2014;4(6):660-77.

  7. Win KY, Feng SS. Effects of particle size and surface coating on cellular uptake of polymeric nano-particles for oral delivery of anticancer drugs. Biomaterials. 2005;26(15):2713-22.

  8. Choi KY, Liu G, Lee S, Chen X. Theranostic nanoplatforms for simultaneous cancer imaging and therapy: current approaches and future perspectives. Nanoscale. 2012;4(2):330-42.

  9. Arranja AG, Pathak V, Lammers T, Shi Y. Tumor-targeted nanomedicines for cancer theranostics. Pharmacol Res. 2017;115:87-95.

  10. Canney PA, Moore M, Wilkinson PM, James RD. Ovarian cancer antigen CA125: A prospective clinical assessment of its role as a tumour marker. Br J Cancer. 1984;50(6):765-9.

  11. Acheson N, Chan KK. Epithelial ovarian cancer. In: Shafi MI, Luesley DM, Jordan JA, editors. Handbook of gynaecological oncology. London: Churchill Livingstone; 2001. p. 231-41.

  12. Bast RC. Status of tumor markers in ovarian cancer screening. J Clin Oncol. 2003;21(10 Suppl): 200-5s.

  13. Iyoke CA, Ugwu GO. Burden of gynaecological cancers in developing countries. World J Obstet Gynecol. 2013;2(1):1-7.

  14. Esanakula J, Rama Ch, Nagasree. Gynecological symptoms in apparently asymptomatic women. Int Organ Sci Res J Dental Med Sci. 2015;14(5):37-42.

  15. Bankhead CR, Collins C, Stokes-Lampard H, Rose P, Wilson S, Clements A, Mant D, Kehoe ST, Austoker J. Identifying symptoms of ovarian cancer: A qualitative and quantitative study. BJOG. 2008;115(8):1008-14.

  16. National Institute for Health and Care Excellence, London. Ovarian cancer: the recognition and initial management of ovarian cancer. 2011 [cited 2018 June 18]. Available from: https://www.nice.org. uk/guidance/cg122.

  17. Zelter J, Zins M, Coletta LB, Rousset P, Lardiere SD, Hoeffel C. Digestive diseases mimicking primary gynecological diseases or with secondary gynecological manifestations. Diagn Interv Imaging. 2016;97(1):29-36.

  18. Kurtz AB, Tsimikas JV, Tempany CMC, Hamper UM, Arger PH, Bree RL, Wechsler RJ, Francis IR, Kuhlman JE, Siegelman ES, Mitchell DG, Silverman SG, Brown DL, Sheth S, Coleman BG, Ellis JH, Kurman RJ, Caudry DJ, McNeil BJ. Diagnosis and staging of ovarian cancer: comparative values of Doppler and conventional US, CT, and MR imaging correlated with surgery and histopathologic analysis: report of the radiology diagnostic oncology group. Radiology. 1999;212(1):19-27.

  19. Jacobs I, Stabile I, Bridges J, Kemsley P, Reynolds C, Grudzinskas J, Oram D. Multimodal approach to screening for ovarian cancer. Lancet. 1988;1(8580):268-71.

  20. Creasman WT, DiSaia PJ. Screening in ovarian cancer. Am J Obstet Gynecol. 1991;165(1):7-10.

  21. Taylor KJ, Schwartz PE. Screening for early ovarian cancer. Radiology. 1994;192(1):1-10.

  22. Schutter EM, Kenemans P, Sohn C, Kristen P, Crombach G, Westermann R, Mobus V, Kaufmann M, Caffier H, Schmidt-Rhode P, Kreienberg R, Verstraeten RA, Curmllie F. Diagnostic value of pelvic examination, ultrasound, and serum CA 125 in postmenopausal women with a pelvic mass. An inter-national multicenter study. Cancer. 1994;74(4):1398-406.

  23. Adonakis GL, Paraskevaidis E, Tsiga S, Seferiadis K, Lolis DE. A combined approach for the early detection of ovarian cancer in asymptomatic women. Eur J Obstet Gynecol Reprod Biol. 1996;65(2):221-5.

  24. Myers ER, Bastian LA, Havrilesky LJ, Kulasingam SL, Terplan MS, Cline KE, Gray RN, McCrory DC. Management of adnexal mass. Rockville, MD: Agency for Healthcare Research and Quality; 2006. Evidence Report/Technology Assessment No. 130, Report No. 06-E004. Contract No. 290-02.

  25. Liu J, Xu Y, Wang J. Ultrasonography, computed tomography and magnetic resonance imaging for diagnosis of ovarian carcinoma. Eur J Radiol. 2007;62(3):328-34.

  26. Guirguis-Blake JM, Henderson JT, Perdue LA, Whitlock EP. Screening for gynecologic conditions with pelvic examination: a systematic review for the U.S. preventive services task force. Rockville (MD): Agency for Healthcare Research and Quality; 2017. Evidence Syntheses No. 147, Report No. 15-05220-EF-1. Contract No. HHSA-290-2012-00015-I-EPC4.

  27. Ebell H, Culp MB, Lastinger K, Dasigi T. A systematic review of the bimanual examination as a test for ovarian cancer mark. Am J Prev Med. 2015;48(3):350-6.

  28. Scholler N, Urban N. CA125 in ovarian cancer. Biomark Med. 2007;1(4):513-523.

  29. Gupta D, Lis CG. Role of CA125 in predicting ovarian cancer survival: a review of the epidemiological literature. J Ovarian Res. 2009;2:13.

  30. Jacobs IJ, Menon U. Progress and challenges in screening for early detection of ovarian cancer. Mol Cell Proteomics. 2004;3(4):355-66.

  31. Terry KL, Sluss PM, Skates SJ, Mok SC, Ye B, Vitonis AF, Cramer DW. Blood and urine markers for ovarian cancer: A comprehensive review. Dis Markers. 2004;20(18):53-70.

  32. Simmons AR, Baggerly K, Bast RC. The emerging role of HE4 in the evaluation of advanced epithelial ovarian and endometrial carcinomas. Oncology (Williston Park). 2013;27(6):548-56.

  33. Tamir A, Gangadharan A, Balwani S, Tanaka T, Patel U, Hassan A, Benke S, Agas A, D'Agostino J, Shin D, Yoon S, Goy A, Pecora A, Suh KS. The serine protease prostasin (PRSS8) is a potential biomarker for early detection of ovarian cancer. J Ovarian Res. 2016;9(20).

  34. Wei R, Wong JPC, Kwok HF. Osteopontin: A promising biomarker for cancer therapy. J Cancer. 2017;8(12):2173-83.

  35. Moszynski R, Szubert S, Szpurek D, Michalak S, Sajdak S. Role of osteopontin in differential diagnosis of ovarian tumors. J Obstet Gynaecol Res. 2013;39(11):1518-25.

  36. Lambert-Messerlian GM. Is inhibin a serum marker for ovarian cancer? Eur J Endocrinol. 2000;142(4):331-3.

  37. Walentowicz P, Krintus M, Sadlecki P, Grabiec M, Mankowska-Cyl A, Sokup A, Walentowicz-Sadlecka M. Serum inhibin A and inhibin B levels in epithelial ovarian cancer patients. PLoS One. 2014;9(3):e90575.

  38. Tang Z, Qian M, Ho M. The role of mesothelin in tumor progression and targeted therapy. Anticancer Agents Med Chem. 2013;13(2):276-80.

  39. Hassan R, Bera T, Pastan I. Mesothelin, a new target for immunotherapy. Clin Cancer Res. 2004;10(12):3937-42.

  40. Sarojini S, Tamir A, Lim H, Li S, Zhang S, Goy A, Pecora A, Suh KS. Early detection biomarkers for ovarian cancer. J Oncol. 2012;2012:709049.

  41. Nolen BM, Lokshin AE. Ovarian cancer screening and early detection. In: Farghaly SA, editors. Advances in diagnosis and management of ovarian cancer. New York: Springer; 2014. p. 33-58.

  42. Rein BJD, Gupta S, Dada R, Safi J, Michener C, Agarwal A. Potential markers for detection and monitoring of ovarian cancer. J Oncol. 2011;2011:475983.

  43. Nguyen L, Cardenas-Goicoechea SJ, Gordon P, Curtin C, Momeni M, Chuang L, Fishman D. Bio-markers for early detection of ovarian cancer. Women's Health (Lond). 2013;9(2):171-87.

  44. Moghaddam SM, Amini A, Morris DL, Pourgholam MH. Significance of vascular endothelial growth factor in growth and peritoneal dissemination of ovarian cancer. Cancer Metast Rev. 2012;31(1- 2):143-62.

  45. Lane D, Matte I, Rancourt C, Piche A. Prognostic significance of IL-6 and IL-8 ascites levels in ovarian cancer patients. BMC Cancer. 2011;11:210.

  46. Ding H, Liu J, Xue R, Zhao P, Qin Y, Zheng F, Sun X. Transthyretin as a potential biomarker for the differential diagnosis between lung cancer and lung infection. Biomed Rep. 2014;2(5):765-9.

  47. Anastasi E, Granato T, Falzarano R, Storelli P, Ticino A, Frati L, Panici PB, Porpora MG. The use of HE4, CA125 and CA72-4 biomarkers for differential diagnosis between ovarian endometrioma and epithelial ovarian cancer. J Ovarian Res. 2013;6:44.

  48. Al-Musalhi K, Al-Kindi M, Ramadhan F, Al-Rawahi T, Al-Hatali K, Mula-Abed WA. Validity of cancer antigen-125 (CA-125) and risk of malignancy index (RMI) in the diagnosis of ovarian cancer. Oman Med J. 2015;30(6):428-34.

  49. Montagnana M, Danese E, Ruzzenente O, Bresciani V, Nuzzo T, Gelati M, Salvagno GL, Franchi M, Lippi, Cesare G. The ROMA (risk of ovarian malignancy algorithm) for estimating the risk of epithelial ovarian cancer in women presenting with pelvic mass: is it really useful? Clin Chem Lab Med. 2011;49(3):521-5.

  50. Moore RG, Raughley MJ, Brown AK, Robison KM, Miller MC, Allard WJ, Kurman RJ, Bast RC, Skates SJ. Comparison of a novel multiple marker assay versus the risk of malignancy index for the prediction of epithelial ovarian cancer in patients with a pelvic mass. Am J Obstet Gynecol. 2010;203(3):228.e1-6.

  51. Moore RG, McMeekin DS, Brown AK, Silvestro PD, Miller MC, Allard WJ, Gajewski W, Kurman R, Bast Jr RC, Skates SJ. A novel multiple marker bioassay utilizing HE4 and CA125 for the prediction of ovarian cancer in patients with a pelvic mass. Gynecol Oncol. 2009;112(1):40-46.

  52. Anton C, Carvalho FM, Oliveira EI, Maciel GAR, Baracat EC, Carvalho JP. A comparison of CA125, HE4, risk ovarian malignancy algorithm (ROMA), and risk malignancy index (RMI) for the classification of ovarian masses. Clinics. 2012;67(5):437-41.

  53. Vuento MH, Pirhonen JP, Makinen JI, Laippala PJ, Gronroos M, Salmi TA. Evaluation of ovarian findings in asymptomatic postmenopausal women with color Doppler ultrasound. Cancer. 1995;76(7):1214-8.

  54. Havrileskya LJ, Kulasingam SL, Matchar DB, Myers ER. FDG-PET for management of cervical and ovarian cancer. Gynecol Oncol. 2005;97(1):183-91.

  55. Petricoin III EF, Ardekani AM, Hitt BA, Levine PJ, Fusaro VA, Steinberg SM, Mills GB, Simone C, Fishman DA, Kohn EC, Liotta LA. Use of proteomic patterns in serum to identify ovarian cancer. Lancet. 2002;359(9306):572-7.

  56. Odunsi K, Wollman RM, Ambrosone CB, Hutson A, McCann SE, Tammela J, Geisler JP, Miller G, Sellers T, Cliby W, Qian F, Keitz B, Intengan M, Lele S, Alderfer JL. Detection of epithelial ovarian cancer using lH-NMR-based metabonomics. Int J Cancer. 2005;113(5):782-8.

  57. Ke C, Li A, Hou Y, Sun M, Yang K, Cheng J, Wang J, Ge T, Zhang F, Li Q, Li J, Wu Y, Lou G, Li K. Metabolic phenotyping for monitoring ovarian cancer patients. Sci Rep. 2016;6:23334.

  58. Boss EA, Moolenaar SH, Massuger LF, Boonstra H, Engelke UF, de Jong JG, Wevers RA. High-resolution proton nuclear magnetic resonance spectroscopy of ovarian cyst fluid. NMR Biomed. 2000;13(5):297-305.

  59. Denkert C, Budczies J, Kind T, Weichert W, Tablack P, Sehouli J, Niesporek S, Konsgen D, Dietel M, Fiehn O. Mass spectrometry-based metabolic profiling reveals different metabolite patterns in invasive ovarian carcinomas and ovarian borderline tumors. Cancer Res. 2006;66(22):10795-804.

  60. Guan W, Zhou M, Hampton CY, Benigno BB, Walker LD, Gray A, McDonald JF, Fernandez FM. Ovarian cancer detection from metabolomic liquid chromatography/mass spectrometry data by support vector machines. BMC Bioinformatics. 2009;10:259.

  61. Woo HM, Kim KM, Choi MH, Jung BH, Lee J, Kong G, Nam SJ, Kim S, Bai SW, Chung BC. Mass spectrometry based metabolomics approaches in urinary biomarker study of women's cancers. Clin Chim Acta. 2009;400(1-2):63-9.

  62. Zhou M, Guan W, Walker LD, Mezencev R, Benigno BB, Gray A, Fernandez FM, McDonald JF. Rapid mass spectrometric metabolic profiling of blood sera detects ovarian cancer with high accuracy. Cancer Epidemiol Biomarkers Prev. 2010;19(9):2262-71.

  63. Silva EG, Lopez PR, Atkinson EN, Fente CA. A new approach for identifying patients with ovarian epithelial neoplasms based on high-resolution mass spectrometry. Am J Clin Pathol. 2010;134(6): 903-9.

  64. Slupsky CM, Steed H, Wells TH, Dabbs K, Schepansky A, Capstick V, Faught W, Sawyer MB. Urine metabolite analysis offers potential early diagnosis of ovarian and breast cancers. Clin Cancer Res. 2010;16(23):5835-41.

  65. Garcia E, Andrews C, Hua J, Kim HL, Sukumaran DK, Szyperski T, Odunsi K. Diagnosis of early stage ovarian cancer by 1H NMR metabonomics of serum explored by use of a microflow NMR probe. J Proteome Res. 2011;10(4):1765-71.

  66. Chen J, Zhang X, Cao R, Lu X, Zhao S, Fekete A, Huang Q, Schmitt-Kopplin P, Wang Y, Xu Z, Wan X, Wu X, Zhao N, Xu C, Xu G. Serum 27-nor-5beta-cholestane-3,7,12,24,25 pentol glucuronide discovered by metabolomics as potential diagnostic biomarker for epithelium ovarian cancer. J Proteome Res. 2011;10(5):2625-32.

  67. Chen J, Zhang Y, Zhang X, Cao R, Chen S, Huang Q, Lu X, Wan X, Wu X, Xu C, Xu G, Lin X. Application of L-EDA in metabonomics data handling: global metabolite profiling and potential biomarker discovery of epithelial ovarian cancer prognosis. Metabolomics. 2011;7(4):614-22.

  68. Fong MY, McDunn J, Kakar SS. Identification of metabolites in the normal ovary and their transformation in primary and metastatic ovarian cancer. PLoS One. 2011;6(5):e19963.

  69. Zhang T, Wu X, Yin M, Fan L, Zhang H, Zhao F, Zhang W, Ke C, Zhang G, Hou Y, Zhou X, Lou G, Li K. Discrimination between malignant and benign ovarian tumors by plasma metabolomic profiling using ultra performance liquid chromatography/mass spectrometry. Clin Chim Acta. 2012;413(9-10):861-8.

  70. Fan L, Zhang W, Yin M, Zhang T, Wu X, Zhang H, Sun M, Li Z, Hou Y, Zhou X, Lou G, Li K. Iden-tification of metabolic biomarkers to diagnose epithelial ovarian cancer using a UPLC/QTOF/MS platform. Acta Oncol. 2012;51(4):473-9.

  71. Chen J, Zhou L, Zhang X, Lu X, Cao R, Xu C, Xu G. Urinary hydrophilic and hydrophobic metabolic profiling based on liquid chromatography-mass spectrometry methods: Differential metabolite discovery specific to ovarian cancer. Electrophoresis. 2012;33(22):3361-9.

  72. Zhang T, Wu X, Ke C, Yin M, Li Z, Fan L, Zhang W, Zhang H, Zhao F, Zhou X, Lou G, Li K. Identification of potential biomarkers for ovarian cancer by urinary metabolomic profiling. J Proteome Res. 2013;12(1):505-12.

  73. Shender VO, Pavlyukov MS, Ziganshin RH, Arapidi GP, Kovalchuk SI, Anikanov NA, Altukhov IA, Alexeev DG, Butenko IO, Shavarda AL, Khomyakova EB, Evtushenko E, Ashrafyan LA, Antonova IB, Kuznetcov IN, Gorbachev AY, Shakhparonov MI, Govorun VM. Proteome-metabolome profiling of ovarian cancer ascites reveals novel components involved in intercellular communication. Mol Cell Proteomics. 2014;13(12):3558-71.

  74. Ke C, Hou Y, Zhang H, Fan L, Ge T, Guo B, Zhang F, Yang K, Wang J, Lou G, Li K. Large-scale profiling of metabolic dysregulation in ovarian cancer. Int J Cancer. 2015;136(3):516-26.

  75. Cheng Y, Li L, Zhu B, Liu F, Wang Y, Gu X, Yan C. Expanded metabolomics approach to profiling endogenous carbohydrates in the serum of ovarian cancer patients. J Sep Sci. 2015;39(2):316-23.

  76. Hilvo M, de Santiago I, Gopalacharyulu P, Schmitt WD, Budczies J, Kuhberg M, Dietel M, Aittokallio T, Markowetz F, Denkert C, Sehouli J, Frezza C, Darb-Esfahani S, Braicu EI. Accumulated metabolites of hydroxybutyric acid serve as diagnostic and prognostic biomarkers of high-grade serous ovarian carcinomas. Cancer Res. 2016;76(4):796-4.

  77. Buas MF, Gu H, Djukovic D, Zhu J, Drescher CW, Urban N, Raftery D, Li CI. Identification of novel candidate plasma metabolite biomarkers for distinguishing serous ovarian carcinoma and benign serous ovarian tumors. Gynecol Oncol. 2016;140(1):138-44.

  78. Kyriakides M, Rama N, Sidhu J, Gabra H, Keun HC, El-Bahrawy M. Metabonomic analysis of ovarian tumour cyst fluid by proton nuclear magnetic resonance spectroscopy. Oncotarget. 2016;7(6):7216-26.

  79. Fan L, Yin M, Ke C, Ge T, Zhang G, Zhang W, Zhou X, Lou G, Li K. Use of plasma metabolomics to identify diagnostic biomarkers for early stage epithelial ovarian cancer. J Cancer. 2016;7(10):1265-72.

  80. Sans M, Gharpure K, Tibshirani R, Zhang J, Liang L, Liu J, Young JH, Dood RL, Sood AK, Eberlin LS. Metabolic markers and statistical prediction of serous ovarian cancer aggressiveness by ambient ionization mass spectrometry imaging. Cancer Res. 2017;77(11):2903-13.

  81. Tajmul M, Parween F, Singh L, Mathur SR, Sharma JB, Kumar S, Sharma DN, Yadav S. Identification and validation of salivary proteomic signatures for non-invasive detection of ovarian cancer. Int J Biol Macromol. 2018;108:503-14.

  82. Kozar N, Kruusma K, Biten M, Argamasill R, Adsuar A, Goswamie N, Arko D, Takac I. Metabolomic profiling suggests long chain ceramides and sphingomyelins as a possible diagnostic biomarker of epithelial ovarian cancer. Clin Chim Acta. 2018;481:108-14.

  83. Willmott LJ, Fruehauf JP. Targeted therapy in ovarian cancer. J Oncol. 2010;2010:740472.

  84. Tentes AAK, Kakolyris S, Kyziridis D, Karamveri C. Cytoreductive surgery combined with hyperthermic intraperitoneal intraoperative chemotherapy in the treatment of advanced epithelial ovarian cancer. J Oncol. 2012;2012:358341.

  85. Vergote I, Trope CG, Amant F, Kristensen GB, Ehlen T, Johnson N, Verheijen RHM, van der Burg MEL, Lacave AJ, Panici PB, Kenter GG, Casado A, Mendiola C, Coens C, Verleye L, Stuart GCE, Pecorelli S, Reed NS. Neoadjuvant chemotherapy or primary surgery in stage IIIC or IV ovarian cancer. N Engl J Med. 2010;363(10):943-53.

  86. Coleman RL, Monk BJ, Sood AK, Herzog TJ. Latest research and treatment of advanced-stage epithelial ovarian cancer. Nat Rev Clin Oncol. 2013;10(4):211-24.

  87. Nezhat FR, Pejovic T, Finger TN, Khalil SS. Role of minimally invasive surgery in ovarian cancer. J Minim Invas Gyn. 2013;20(6):754-65.

  88. Kunos CA, Sill MW, Buekers TE, Walker JL, Schilder JM, Yamada SD, Waggoner SE, Mohiuddin M, Fracasso PM. Low-dose abdominal radiation as a docetaxel chemosensitizer for recurrent epithelial ovarian cancer: A phase I study of the Gynecologic Oncology Group. Gynecol Oncol. 2011;120(2):224-8.

  89. Rochet N, Kieser M, Sterzing F, Krause S, Lindel K, Harms W, Eichbaum MH, Schneeweiss A, Sohn C, Debus J. Phase II study evaluating consolidation whole abdominal intensity-modulated radiotherapy (IMRT) in patients with advanced ovarian cancer stage FIGO III: The OVAR-IMRT-02 Study. BMC Cancer. 2011;11:41.

  90. Rochet N, Sterzing F, Jensen AD, Dinkel J, Herfarth KK, Schubert K, Eichbaum MH, Schneeweiss ZA, Sohn ZC, Debus Z, Harms W. Intensity-modulated whole abdominal radiotherapy after surgery and carboplatin/taxane chemotherapy for advanced ovarian cancer: phase I study. Int J Radiation Oncol Biol Phys. 2010;76(5):1382-9.

  91. Taylor A, Powell MEB. Intensity-modulated radiotherapy: what is it? Cancer Imaging. 2004;4(2): 68-73.

  92. Gracia A, Singh H. Bevacizumab and ovarian cancer. Ther Adv Med Oncol. 2013;5(2):133-41.

  93. Ledermann JA, Embleton AC, Raja F, Perren TJ, Jayson GC, Rustin GJS, Kaye SB, Hirte H, Eisenhauer E, Vaughan M, Friedlander M, Martin AG, Stark D, Clark E, Farrelly L, Swart AM, Cook A, Kaplan RS, Parmar MKB. Cediranib in patients with relapsed platinum-sensitive ovarian cancer (ICON6): a randomised, double-blind, placebo-controlled phase 3 trial on behalf of the ICON6 collaborators. Lancet. 2016;387(10023):1066-74.

  94. Matulonis UA, Berlin S, Ivy P, Tyburski K, Krasner C, Zarwan C, Berkenblit A, Campos S, Horowitz N, Cannistra SA, Lee H, Lee J, Roche M, Hill M, Whalen C, Sullivan L, Tran C, Humphreys BD, Penson RT. Cediranib, an oral inhibitor of vascular endothelial growth factor receptor kinases, is an active drug in recurrent epithelial ovarian, fallopian tube, and peritoneal cancer. J Clin Oncol. 2009;27(33):5601-6.

  95. McLachlana J, Banerjee S. Pazopanib in ovarian cancer. Expert Rev Anticancer Ther. 2015;15(9): 995-5.

  96. Vasey PA, Gore M, Wilson R, Rustin G, Gabra H, Guastalla JP, Lauraine EP, Paul J, Carty K, Kaye S. A phase Ib trial of docetaxel, carboplatin and erlotinib in ovarian, fallopian tube and primary peritoneal cancers. Br J Cancer. 2008;98(11):1774-80.

  97. Langdon SP, Faratian D, Nagumo Y, Mullen P, Harrison DJ. Pertuzumab for the treatment of ovarian cancer. Expert Opin Biol Ther. 2010;10(7):1113-20.

  98. Mullen P, Cameron DA, Hasmann M, Smyth JF, Langdon SP. Sensitivity to pertuzumab (2C4) in ovarian cancer models: cross-talk with estrogen receptor signaling. Mol Cancer Ther. 2007;6(1): 93-100.

  99. Kim A, Ueda Y, Naka T, Enomoto T. Therapeutic strategies in epithelial ovarian cancer. J Exp Clin Cancer Res. 2012;31(1):14.

  100. Mabuchi S, Altomare DA, Cheung M, Zhang L, Poulikakos PI, Hensley HH, Schilder RJ, Ozols RF, Testa JR. RAD001 inhibits human ovarian cancer cell proliferation, enhances cisplatin-induced apoptosis, and prolongs survival in an ovarian cancer model. Clin Cancer Res. 2007;13(14):4261-70.

  101. Armstrong DK, White AJ, Weil SC, Phillips M, Coleman RL. Farletuzumab (a monoclonal antibody against folate receptor alpha) in relapsed platinum-sensitive ovarian cancer. Gynecol Oncol. 2013;129(3):452-8.

  102. Konner JA, McGuinn KMB, Sabbatini P, Hensley ML, Tew WP, Taskar NP, Vander Els N, Phillips MD, Schweizer C, Weil SC, Larson SM, Old LJ. Farletuzumab, a humanized monoclonal antibody against folate receptor a, in epithelial ovarian cancer: a phase I study. Clin Cancer Res. 2010;16(21):5288-95.

  103. Goldenberg MM. Trastuzumab, a recombinant DNA-derived humanized monoclonal antibody, a novel agent for the treatment of metastatic breast cancer. Clin Ther. 1999;21(2):309-18.

  104. Secord AA, Blessing JA, Armstrong DK, Rodgers WH, Miner Z, Barnes MN, Lewandowski G, Mannel RS. Phase II trial of cetuximab and carboplatin in relapsed platinum-sensitive ovarian cancer and evaluation of epidermal growth factor receptor expression: A Gynecologic Oncology Group study. Gynecol Oncol. 2008;108(3):493-9.

  105. Monk BJ, Poveda A, Vergote I, Raspagliesi F, Fujiwara K, Bae DS, Oaknin A, Coquard IR, Provencher DM, Karlan BY, Lhomme C, Richardson G, Rincon DG, Coleman RL, Herzog TJ, Marth C, Brize A, Fabbro M, Redondo A, Bamias A, Tassoudji M, Navale L, Warner DJ, Oza AM. Anti-angiopoietin therapy with trebananib for recurrent ovarian cancer (TRINOVA-1): a randomised, multicentre, double-blind, placebo-controlled phase 3 trial. Lancet Oncol. 2014;15(8):799-8.

  106. Gotlieb WH, Amant F, Advani S, Goswami C, Hirte H, Provencher D, Somani N, Yamada SD, Tamby JF, Vergote I. Intravenous aflibercept for treatment of recurrent symptomatic malignant ascites in patients with advanced ovarian cancer: a phase 2, randomised, double-blind, placebo-controlled study. Lancet Oncol. 2012;13(2):154-62.

  107. Gordon AN, Schultes BC, Gallion H, Edwards R, Whiteside TL, Cermak JM, Nicodemus CF. CA125- and tumor-specific T-cell responses correlate with prolonged survival in oregovomab-treated recurrent ovarian cancer patients. Gynecol Oncol. 2004;94(2):340-51.

  108. Polcher M, Eckhardt M, Coch C, Wolfgarten M, Kubler K, Hartmann G, Kuhn W, Rudlowski C. Sorafenib in combination with carboplatin and paclitaxel as neoadjuvant chemotherapy in patients with advanced ovarian cancer. Cancer Chemother Pharmacol. 2010;66(1):203-7.

  109. Schilder RJ, Sill MW, Chen X, Darcy KM, Decesare SL, Lewandowski G, Lee RB, Arciero CA, Wu H, Godwin AK. Phase II study of gefitinib in patients with relapsed or persistent ovarian or primary peritoneal carcinoma and evaluation of epidermal growth factor receptor mutations and immunohis- tochemical expression: a gynecologic oncology group study. Clin Cancer Res. 2005;11(15):5539-48.

  110. Le XF, Mao W, Lu Z, Carter BZ, Bast RC. Dasatinib induces autophagic cell death in human ovarian cancer. Cancer. 2010;116(21):4980-90.

  111. Papadimitrioua CA, Markakib S, Siapkarasa J, Vlachosc G, Efstathioua E, Grimania I, Hamilosa G, Zorzoua M, Dimopoulos MA. Hormonal therapy with letrozole for relapsed epithelial ovarian cancer long-term results of a phase II study. Oncol. 2004;66(2):112-7.

  112. Kelland LR. Emerging drugs for ovarian cancer. Expert Opin Emerg Drugs. 2005;10(2):413-24.

  113. Modesitt SC, Sill M, Hoffman JS, Bender DP. A phase II study of vorinostat in the treatment of persistent or recurrent epithelial ovarian or primary peritoneal carcinoma: a Gynecologic Oncology Group study. Gynecol Oncol. 2008;109(2):182-6.

  114. Aghajanian C, Dizon DS, Sabbatini P, Raizer JJ, Dupont J, Spriggs DR. Phase I trial of bortezomib and carboplatin in recurrent ovarian or primary peritoneal cancer. J Clin Oncol. 2005;23(25):5943-9.

  115. Nakayama K, Nakayama N, Katagiri H, Miyazaki K. Mechanisms of ovarian cancer metastasis: biochemical pathways. Int J Mol Sci. 2012;13(9):11705-17.

  116. Arend RC, Londono-Joshi AI, Straughn Jr JM, Buchsbaum DJ. The Wnt/p-catenin pathway in ovarian cancer: A review. Gynecol Oncol. 2013;131(3):772-9.

  117. Smolle E, Taucher V, Pichler M, Petru E, Lax S, Haybaeck J. Targeting signaling pathways in epithelial ovarian cancer. Int J Mol Sci. 2013;14(5):9536-55.

  118. Von Strandmann EP, Reinartz S, Wager U, Muller R. Tumor-host cell interactions in ovarian cancer: pathways to therapy failure. Trends Cancer. 2017;3(2):137-48.

  119. Yang X, Zhu S, Li L, Zhang L, Xian S, Wang Y, Cheng Y. Identification of differentially expressed genes and signaling pathways in ovarian cancer by integrated bioinformatics analysis. Onco Targets Ther. 2018;11:1457-74.

  120. Banerjee S, Kaye SB. New strategies in the treatment of ovarian cancer: current clinical perspectives and future potential. Clin Cancer Res. 2013;19(5): 961-8.

  121. Chester C, Dorigo O, Berek JS, Kohrt H. Immunotherapeutic approaches to ovarian cancer treatment. J Immunother Cancer. 2015;3:7.

  122. Diou O, Tsapis N, Fattal E. Targeted nanotheranostics for personalized cancer therapy. Expert Opin Drug Deliv. 2012;9(12):1475-87.

  123. Park JH, Gu L, von Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MJ. Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat Mater. 2009;8(4):331-6.

  124. Mundra V, Peng Y, Rana S, Natarajan A, Mahato RI. Micellar formulation of indocyanine green for phototherapy of melanoma. J Control Release. 2015;220(Pt A):130-40.

  125. Kydd J, Jadia R, Velpurisiva P, Gad A, Paliwal S, Rai P. Targeting strategies for the combination treatment of cancer using drug delivery systems. Pharmaceutics. 2017;9(4):46.

  126. Park C, Oh K, Lee SC, Kim C. Controlled release of guest molecules from mesoporous silica particles based on a pH-responsive poly pseudorotaxane motif. Angewandte Chemie. 2007;46(9): 1455-7.

  127. Talelli M, Iman M, Varkouhi AK, Rijcken CJ, Schiffelers RM, Etrych T, Ulbrich K, van Nostrum CF, Lammers T, Storm G, Hennink WE. Core-crosslinked polymeric micelles with controlled release of covalently entrapped doxorubicin. Biomaterials. 2010;31(30):7797-804.

  128. Yu P, Yu H, Guo C, Cui Z, Chen X, Yin Q, Zhang P, Yang X, Cui H, Li Y. Reversal of doxoru-bicin resistance in breast cancer by mitochondria-targeted pH-responsive micelles. Acta Biomater. 2015;14:115-24.

  129. Lee ES, Kim JH, Sim T, Youn YS, Lee BJ, Oh YT. A feasibility study of a pH sensitive nanomedicine using doxorubicin loaded poly (aspartic acid-graftimidazole)-block-poly (ethylene glycol) micelles. J Mater Chem B. 2014;2(9):1152-9.

  130. Zhou L, Wang H, Li Y. Stimuli-responsive nanomedicines for overcoming cancer multidrug resistance. Theranostics. 2018;8(4):1059-74.

  131. Ruoslahti E, Bhatia SN, Sailor MJ. Targeting of drugs and nanoparticles to tumors. J Cell Biol. 2010;188(6):759-68.

  132. Parvanian S, Mostafavi SM, Aghashiri M. Multifunctional nanoparticle developments in cancer diagnosis and treatment. Sens Biosensing Res. 2017;13:81-7.

  133. Dolatabadi JEN, Jamali AA, Hasanzadeh M, Omidi Y. Quercetin delivery into cancer cells with single walled carbon nanotubes. Int J Biosci Biochem Bioinforma. 2011;1(1):21-5.

  134. Mahmood M, Karmakar A, Fejleh A, Mocan T, Iancu C, Mocan L, Iancu DT, Xu Y, Dervishi E, Li Z, Biris AR, Agarwal R, Ali N, Galanzha EI, Biris AS, Zharov VP. Synergistic enhancement of cancer therapy using a combination of carbon nanotubes and antitumor drug. Nanomed (Lond). 2009;4(8):883-93.

  135. Medintz IL, Mattoussi H, Clapp AR. Potential clinical applications of quantum dots. Int J Nanomed. 2008;3(2):151-67.

  136. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science. 2005;307(5709): 538-44.

  137. Wang Y, Zhao Q, Han N, Bai L, Li J, Liu J, Che E, Hu L, Zhang Q, Jiang T, Wang S. Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomed Nanotechnol Biol Med. 2015;11(20):313-27.

  138. Mahdavi M, Ahmad MB, Haron MJ, Namvar F, Nadi B, Rahman MZ, Amin J. Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications. Molecules. 2013;18(7):7533-48.

  139. Akhter S, Ahmad F, Storm G, Kok RJ. Gold nanoparticles in theranostic oncology: Current state-of-the-art. Expert Opin Drug Deliv. 2012;9(10):1225-43.

  140. Martincic M, Tobias G. Filled carbon nanotubes in biomedical imaging and drug delivery. Expert Opin Drug Deliv. 2014;12(4):563-81.

  141. Caschera L, Lazzarab A, Piergallinib L, Riccib D, Tuscanob B, Vanzulli A. Contrast agents in diagnostic imaging: present and future. Pharmacol Res. 2016;110:65-75.

  142. Junior JE, dos Santos AC, Santos MK, Barbosa MHN, Muglia VF. Complications from the use of intravenous gadolinium-based contrast agents for magnetic resonance imaging. Radiol Bras. 2008;41(4):263-7.

  143. Robert P, Lehericy S, Grand S, Violas X, Fretellier N, Idee JM, Ballet S, Corot C. T1-weighted hypersignal in the deep cerebellar nuclei after repeated administrations of gadolinium-based contrast agents in healthy rats. Invest Radiol. 2015;50(8):473-80.

  144. Rogosnitzky M, Branch S. Gadolinium-based contrast agent toxicity: a review of known and proposed mechanisms. Biometals. 2016;29(3):365-76.

  145. Estelrich J, Sanchez-Martin MJ, Busquets MA. Nanoparticles in magnetic resonance imaging: from simple to dual contrast agents. Int J Nanomed. 2015;10(1):1727-41.

  146. Kim J, Chhour P, Hsu J, Litt HI, Ferrari VA, Popovtzer R, Cormode DP. Use of nanoparticle contrast agents for cell tracking with computed tomography. Bioconjug Chem. 2017;28(6):1581-97.

  147. Peng XH, Qian X, Mao H, Wang AY, Chen Z, Nie S, Shin DM. Targeted magnetic iron oxide nano-particles for tumor imaging and therapy. Int J Nanomed. 2008;3(3):311-21.

  148. Baveye P. Aggregation and toxicology of titanium dioxide nanoparticles. Environ Health Prospect. 2008;116(4):A152.

  149. Dutch MC, Budinger GRS, Liang YT, Soberanes S, Urich D, Chiarella SE, Campochiaro LA, Gonzalez A, Chandel NS, Hersam MC, Mutlu GM. Minimizing oxidation and stable nanoscale dispersion improves the biocompatibility of graphene in the lung. Nano Lett. 2011;11(12):5201-7.

  150. Tripathy N, Hong TK, Ha KT, Jeong HS, Hahn YB. Effect of ZnO nanoparticles aggregation on the toxicity in RAW 264.7 murine macrophage. J Hazard Mater. 2014;270:110-7.

  151. Wick P, Manser P, Limbach LK, Weglikowska UD, Krumeich F, Roth S, Stark WJ, Bruinink A. The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol Lett. 2007;168(2): 121-31.

  152. Li Y, Riviere NAM. Mechanisms of cell uptake, inflammatory potential and protein corona effects with gold nanoparticles. Nanomedicine (Lond). 2016;11(24):3185-203.

  153. Neagu M, Piperigkou Z, Karamanou K, Engin AB, Docea AO, Constantin C, Negrei C, Nikitovic D, Tsatsakis A. Protein bio-corona: critical issue in immune nanotoxicology. Arch Toxicol. 2017;91(3):1031-48.

  154. Saptarshi SR, Duschl A, Lopata AL. Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle. J Nanobiotechnol. 2013;11:26.

  155. Gustafson HH, Casper DH, Grainger DW, Ghandehari H. Nanoparticle uptake: the phagocyte problem. Nano Today. 2015;10(4):487-10.

  156. Morachis JM, Mahmoud EA, Almutairi A. Physical and chemical strategies for therapeutic delivery by using polymeric nanoparticles. Pharmacol Rev. 2012;64(3):505-19.

  157. Sharma A, Madhunapantula SV, Robertson GP. Toxicological considerations when creating nanoparticle based drugs and drug delivery systems? Expert Opin Drug Metab Toxicol. 2012;8(1):47-69.

  158. Kostarelos K, Lacerda L, Pastorin G, Wu W, Wieckowski SB, Luangsivilay J, Godefroy S, Pantarotto D, Briand JP, Muller S, Bianco MPA. Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat Nanotechnol. 2007;2(2):108-13.

  159. Dumortier H, Lacotte S, Pastorin G, Marega R, Wu W, Bonifazi D, Briand JP, Prato M, Muller S, Bianco A. Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells. Nano Lett. 2006;6(7):1522-8.

  160. Jamal KTA, Nunes A, Methven L, Boucetta HA, Li S, Toma FM, Herrero MA, Jamal WTA, ten Eikelder HM, Foster J, Mather S, Prato M, Bianco A, Kostarelos K. Degree of chemical functionalization of carbon nanotubes determines tissue distribution and excretion profile. Angewandte Chemie. 2012;51(26):6389-93.

  161. Shenoy D, Fu W, Li J, Crasto C, Jones G, DiMarzio C, Sridhar S, Amiji M. Surface functionalization of gold nanoparticles using hetero-bifunctional poly(ethylene glycol) spacer for intracellular tracking and delivery. Int J Nanomed. 2006;1(1):51-7.

  162. Thanh NTK, Green LAW. Functionalisation of nanoparticles for biomedical applications. Nano Today. 2010;5(3):213-30.

  163. Duan H, Nie S. Cell-penetrating quantum dots based on multivalent and endosome-disrupting surface coatings. J Am Chem Soc. 2007;129(11):3333-8.

  164. Boucetta HA, Jamal KTA, Muller KH, Li S, Porter AE, Eddaoudi A, Prato M, Bianco A, Kostarelos K. Cellular uptake and cytotoxic impact of chemically functionalized and polymer-coated carbon nanotubes. Small. 2011;7(22):3230-8.

  165. Graf C, Gao Q, Schuutz I, Noufele CN, Ruan W, Posselt U, Korotianskiy E, Nordmeyer D, Rancan F, Hadam S, Vogt A, Lademann J, Haucke V, Ruhl E. Surface functionalization of silica nanoparticles supports colloidal stability in physiological media and facilitates internalization in cells. Langmuir. 2012;28(20):7598-13.

  166. Rosen JE, Gu FX. Surface functionalization of silica nanoparticles with cysteine: a low-fouling zwitter ionic surface. Langmuir. 2011;27(17):10507-13.

  167. Mei BC, Susumu K, Medintz IL, Delehanty JB, Mountziaris TJ, Mattoussi H. Modular poly(ethylene glycol) ligands for biocompatible semiconductor and gold nanocrystals with extended pH and ionic stability. J Mater Chem. 2008;18(41):4949-58.

  168. Nunes A, Bussy C, Gherardini L, Meneghetti M, Herrero MA, Bianco A, Prato M, Pizzorusso T, Jamal KTA, Kostarelos K. In vivo degradation of functionalized carbon nanotubes after stereotactic administration in the brain cortex. Nanomedicine. 2012;7(10):1485-94.

  169. Shvedova AA, Kapralov AA, Feng WH, Kisin ER, Murray AR, Mercer RR, Croix CMS, Lang MA, Watkins SC, Konduru NV, Allen BL, Conroy J, Kotchey GP, Mohamed BM, Meade AD, Volkov Y, Star A, Fadeel B, Kagan VE. Impaired clearance and enhanced pulmonary inflammatory/fibrotic response to carbon nanotubes in myeloperoxidase deficient mice. PLoS One. 2012;7(3):e30923.

  170. Saebo KB, Bjornerud A, Grant D, Ahlstrom H, Berg T, Kindberg GM. Hepatic cellular distribution and degradation of iron oxide nanoparticles following single intravenous injection in rats: implications for magnetic resonance imaging. Cell Tissue Res. 2004;316(3):315-23.

  171. Zheng J, Yang S, Sun S, Zhou C, Hao G, Liu J, Ramezani S, Yu M, Sun X. Renal clearance and degradation of glutathione-coated copper nanoparticles. Bioconj Chem. 2015;26(3):511-9.

  172. He Q, Zhang Z, Gao F, Li Y, Shi J. In vivo biodistribution and urinary excretion of mesoporous silica nanoparticles: effects of particle size and pegylation. Small. 2011;7(2):271-80.

  173. Prencipe G, Tabakman SM, Welsher K, Liu Z, Goodwin AP, Zhang L, Henry J, Dai H. PEG branched polymer for functionalization of nanomaterials with ultra-long blood circulation. J Am Chem Soc. 2009;131(13):4783-7.

  174. Gao W, Hu CMJ, Fang RH, Luk BT, Su J, Zhang L. Surface functionalization of gold nanoparticles with red blood cell membranes. Adv Mater. 2013 Jul 12;25(26):3549-53.

  175. Mu Q, Yang L, Davis JC, Vankayala R, Hwang KC, Zhao J, Yan B. Biocompatibility of polymer grafted core/shell iron/carbon nanoparticles. Biomaterials. 2010;31(19):5083-90.

  176. Lv L, Zhuang YX, Zhang HW, Tian NN, Dang WZ, Wu SY. Capsaicin-loaded folic acid-conjugated lipid nanoparticles for enhanced therapeutic efficacy in ovarian cancers. Biomed Pharmacother. 2017;91:999-1005.

  177. Xing L, Zheng H, Cao Y, Che S. Coordination polymer coated mesoporous silica nanoparticles for pH-responsive drug release. Adv Mater. 2012;24(48):6433-7.

  178. Apte A, Koren E, Koshkaryev A, Torchilin VP. Doxorubicin in TAT peptide-modified multifunctional immunoliposomes demonstrates increased activity against both drug-sensitive and drug-resistant ovarian cancer models. Cancer Biol Ther. 2014;15(1):69-80.

  179. Hami Z, Rezayat SM, Gilani K, Amini M, Ghazi-Khansari M. In vitro cytotoxicity and combination effects of the docetaxel-conjugated and doxorubicin-conjugated poly(lactic acid)-poly(ethylene glycol)-folate-based polymeric micelles in human ovarian cancer cells. J Pharm Pharmacol. 2017;69(2):151-60.

  180. Ye S, Marston G, McLaughlan JR, Sigle DO, Ingram N, Freear S, Baumberg JJ, Bushby RJ, Markham AF, Critchley K, Coletta PL, Evans SD. Engineering gold nanotubes with controlled length and near-infrared absorption for theranostic applications. Adv Funct Mater. 2015;25(14):2117-27.

  181. Bobo MG, Mir Y, Rouxel C, Brevet D, Basile I, Maynadier M, Vaillant O, Mongin O, Desce MB, Morre A, Garcia M, Durand JO, Raehm L. Mannose-functionalized mesoporous silica nanoparticles for efficient two-photon photodynamic therapy of solid tumors. Angewandte Chemie. 2011;50(48):11425-9.

  182. Lu W, Arumugam SR, Senapati D, Singh AK, Arbneshi T, Khan SA, Yu H, Ray PC. Multifunctional oval-shaped gold nanoparticle-based selective detection of breast cancer cells using simple colorimetric and highly sensitive two photon scattering assay. ACS Nano. 2010;4(3):1739-49.

  183. Wu P, Gao Y, Zhang H, Cai C. Aptamer-guided silver-gold bimetallic nanostructures with highly active surface-enhanced Raman scattering for specific detection and near-infrared photothermal therapy of human breast cancer cells. Anal Chem. 2012;84(18):7692-9.

  184. Huang YF, Sefah K, Bamrungsap S, Chang HT, Tan W. Selective photothermal therapy for mixed cancer cells using aptamer-conjugated nanorods. Langmuir. 2008;24(20):11860-5.

  185. Bagalkot V, Zhang L, Nissenbaum EL, Jon S, Kantoff PW, Langer R, Farokhzad OC. Quantum dotaptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett. 2007;7(10):3065-70.

  186. Luo YL, Shiao YS, Huang YF. Release of photo activatable drugs from plasmonic nanoparticles for targeted cancer therapy. ACS Nano. 2011;5(10):7796-804.

  187. Kang H, O'Donoghue MB, Liu H, Tan W. A liposome-based nanostructure for aptamer directed delivery. Chem Commun. 2010;46(2):249-51.

  188. Cao Z, Tong R, Mishra A, Xu W, Wong GCL, Cheng J, Lu Y. Reversible cell-specific drug delivery with aptamer-functionalized liposomes. Angew Chem Int Ed. 2009;48(35):6494-8.

  189. Jalalian SH, Taghdisi SM, Hamedani NS, Kalat SAM, Lavaee P, ZandKarimi M, Ghows N, Jaafari MR, Naghibi S, Danesh NM, Ramezani M, Abnous K. Epirubicin loaded super paramagnetic iron oxide nanoparticle-aptamer bioconjugate for combined colon cancer therapy and imaging in vivo. Eur J Pharm Sci. 2013;50(2):191-7.

  190. Wang AZ, Bagalkot V, Vasilliou CC, Gu F, Alexis F, Zhang L, Shaikh M, Yuet K, Cima MJ, Langer R, Kantoff PW, Bander NH, Jon S, Farokhzad OC. Superparamagnetic iron oxide nanoparticle-aptamer bioconjugates for combined prostate cancer imaging and therapy. Chem Med Chem. 2008;3(9):1311-5.

  191. Alberti D, Protti N, Franck M, Stefania R, Bortolussi S, Altieri S, Deagostino A, Aime S, Crich GS. Theranostic nanoparticles loaded with imaging probes and rubrocurcumin for combined cancer therapy by folate receptor targeting. Chem Med Chem. 2017;12(7):502-9.

  192. Feng D, Song Y, Shi W, Li X, Ma H. Distinguishing folate-receptor-positive cells from folate-receptor-negative cells using a fluorescence off-on nanoprobe. Anal Chem. 2013;85(13):6530-5.

  193. Yuan H, Fales AM, Vo-Dinh T. TAT peptide-functionalized gold nanostars: enhanced intracellular delivery and efficient NIR photothermal therapy using ultralow irradiance. J Am Chem Soc. 2012;134(28):11358-61.

  194. Hartono SB, Gu W, Kleitz F, Liu J, He L, Middelberg APJ, Yu C, Lu GQ, Qiao SZ. Poly-L-lysine functionalized large pore cubic meso structured silica nanoparticles as biocompatible carriers for gene delivery. ACS Nano. 2012;6(3):2104-17.

  195. Chen Y, Zhu X, Zhang X, Liu B, Huang L. Nanoparticles modified with tumor-targeting scFv deliver siRNA and miRNA for cancer therapy. Mol Ther. 2010;18(9):1650-6.

  196. Li X, Chen Y, Wang M, Ma Y, Xia W, Gu H. A mesoporous silica nanoparticle-PEI-fusogenic peptide system for siRNA delivery in cancer therapy. Biomaterials. 2013;34(4):1391-401.

  197. Zou S, Cao N, Cheng D, Zheng R, Wang J, Zhu K, Shuai X. Enhanced apoptosis of ovarian cancer cells via nanocarrier-mediated codelivery of siRNA and doxorubicin. Int J Nanomed. 2012;7:3823-35.

  198. Palanca-Wessels MC, Booth GC, Convertine AJ, Lundy BB, Berguig GY, Press MF, Stayton PS, Press OW. Antibody targeting facilitates effective intratumoral siRNA nanoparticle delivery to HER2-overexpressing cancer cells. Oncotarget. 2016;7(8):9561-75.

  199. He C, Poon C, Chan C, Yamada SD, Lin W. Nanoscale coordination polymers codeliver chemothe-rapeutics and siRNAs to eradicate tumors of cisplatin-resistant ovarian cancer. J Am Chem Soc. 2016;138(18):6010-9.

  200. Shah V, Taratula O, Garbuzenko OB, Taratula OR, Rodriguez-Rodriguez L, Minko T. Targeted nanomedicine for suppression of CD44 and simultaneous cell death induction in ovarian cancer: An optimal delivery of siRNA and anticancer drug. Clin Cancer Res. 2013;19(22):6193-204.

  201. Chen MT, Gomez LM, Ishikawa FN, Vernier PT, Zhou C, Gundersen MA. pH-sensitive intracellular photoluminescence of carbon nanotube-fluorescein conjugates in human ovarian cancer cells. Nanotechnol. 2009;20(29):295101.

  202. Kim JH, Chung HH, Jeong MS, Song MR, Kang KW, Kim JS. One-step detection of circulating tumor cells in ovarian cancer using enhanced fluorescent silica nanoparticles. Int J Nanomed. 2013;8(1):2247-57.

  203. Di Pasqua AJ, Yuan H, Chung Y, Kim JK, Huckle JE, Li C, Sadgrove M, Tran TH, Jay M, Lu X. Neutron-activatable holmium-containing mesoporous silica nanoparticles as a potential radionuclide therapeutic agent for ovarian cancer. J Nucl Med. 2013;54(1):111-6.

  204. Huang S, Li R, Qu Y, Shen J, Liu J. Fluorescent biological label for recognizing human ovarian tumor cells based on fluorescent nanoparticles. J Fluoresc. 2009;19(6):1095-101.

  205. Liberman A, Martinez HP, Ta CN, Barback CV, Mattrey RF, Kono Y, Blair SL, Trogler WC, Kummel AC, Wu Z. Hollow silica and silica-boron nano/microparticles for contrast-enhanced ultrasound to detect small tumors. Biomaterials. 2012;33(20):5124-9.

  206. Wang HZ, Wang HY, Liang RQ, Ruan KC. Detection of tumor marker CA125 in ovarian carcinoma using quantum dots. Acta Biochim Biophys Sin. 2004;36(10):681-86.

  207. Zhang W, Peng P, Kuang Y, Yang J, Cao D, You Y, Shen K. Characterization of exosomes derived from ovarian cancer cells and normal ovarian epithelial cells by nanoparticle tracking analysis. Tumor Biol. 2016;37(3):4213-21.

  208. Nathwani BB, Jaffari M, Juriani AR, Mathur AB, Meissner KE. Fabrication and characterization of silk-fibroin-coated quantum dots. IEEE Trans Nanobiosci. 2009;8(1):72-7.

  209. Yoo JS, Kim HB, Won N, Bang J, Ahn SKS, Lee BC, Soh KS. Evidence for an additional metastatic route: in vivo imaging of cancer cells in the primo-vascular system around tumors and organs. Mol Imaging Biol. 2011;13(3):471-80.

  210. Zdobnova TA, Dorofeev SG, Tananaev PN, Zlomanov VP, Stremovskiy OA, Lebedenko EN, Balalaeva IV, Deyev M, Petrov RV. Imaging of human ovarian cancer SKOV-3 cells by quantum dot bioconjugates. Dokl Biochem Biophys. 2010;430(1):41-4.

  211. Hun X, Zhang Z, Tiao L. Anti-Her-2 monoclonal antibody conjugated polymer fluorescent nanopar-ticles probe for ovarian cancer imaging, Anal Chim Acta. 2008;625(2):201-6.

  212. Labouebe MZ, Delie F, Gurny R, Lange N. Benefits of nanoencapsulation for the hypericin-mediated photo detection of ovarian micrometastases. Eur J Pharm Biopharm. 2009;71(2):207-13.

  213. Wang Y, Miao Z, Ren G, Xu Y, Cheng Z. A novel affibody bioconjugate for dual-modality imaging of ovarian cancer. Chem Commun (Camb). 2014;50(85):12832-5.

  214. Gahrouei DS, Abdolahi M. Detection of muc1-expressing ovarian cancer by c595 monoclonal anti-body-conjugated SPIONS using MR imaging. Sci World J. 2013;609151.

  215. Zhou Z, Wang L, Chi X, Bao J, Yang L, Zhao W, Chen Z, Wang X, Chen X, Gao J. Engineered iron-oxide-based nanoparticles as enhanced T1 contrast agents for efficient tumor imaging. ACS Nano. 2013;7(4):3287-96.

  216. Xi L, Satpathy M, Zhao Q, Qian W, Yang L, Jiang H. HER-2/neu targeted delivery of a nanoprobe enables dual photoacoustic and fluorescence tomography of ovarian cancer. Nanomed Nanotechnol Biol Med. 2014;10(3):669-77.

  217. Satpathy M, Wang L, Zielinski R, Qian W, Lipowska M, Capala J, Lee GY, Xu H, Wang A, Mao H, Yang L. Active targeting using HER-2-affibody-conjugated nanoparticles enabled sensitive and specific imaging of orthotopic HER-2 positive ovarian tumors. Small. 2014;10(3):544-55.

  218. Jokerst JV, Cole AJ, Sompel DV, Gambhir SS. Gold nanorods for ovarian cancer detection with photoacoustic imaging and resection guidance via Raman imaging in living mice. ACS Nano. 2012;6(11):10366-77.

  219. Wang L, Neoh KG, Kang ET, Shuter B. Multifunctional polyglycerol-grafted Fe3O4@SiO2 nanoparticles for targeting ovarian cancer cells, Biomaterials. 2011;32(8):2166-73.

  220. Zhang W, Zhang D, Tan J, Cong H. Carbon nanotube exposure sensitizes human ovarian cancer cells to paclitaxel. J Nanosci Nanotechnol. 2012;12:7211-14.

  221. Bhirde AA, Chikkaveeraiah BV, Srivatsan A, Niu G, Jin AJ, Kapoor A, Wang Z, Patel S, Patel V, Gorbach AM, Leapman RD, Gutkind JS, Walker ARH, Chen X. Targeted therapeutic nanotubes influence the viscoelasticity of cancer cells to overcome drug resistance. ACS Nano. 2014;8(5):4177-89.

  222. Lin YC, Lin LY, Gao MY, Fang YP. Mesoporous silica nanoparticles synthesized from liquid crystal display manufacturing extracts as a potential candidate for a drug delivery carrier: evaluation of their safety and biocompatibility. Int J Nanomed. 2013;8(1):3833-42.

  223. Chen Y, Wang X, Liu T, Zhang DS, Wang Y, Gu H, Di W. Highly effective anti-angiogenesis via magnetic mesoporous silica-based siRNA vehicle targeting the VEGF gene for orthotopic ovarian cancer therapy. Int J Nanomed. 2015;10(1):2579-94.

  224. Chen AM, Zhang M, Wei D, Stueber D, Taratula O, Minko T, He H. Co-delivery of doxorubicin and bcl-2 siRNA by mesoporous silica nanoparticles enhances the efficacy of chemotherapy in multidrug resistant cancer cells. Small. 2009;5(23):2673-7.

  225. Shen H, Rodriguez-Aguayo C, Xu R, Villasana VG, Mai J, Huang Y, Zhang G, Guo X, Bai, L, Qin G, Deng X, Li Q, Erm DR, Aslan B, Liu X, Sakamoto J, Chavez-Reyes A, Han HD, Sood AK, Ferrari M, Berestein GL. Enhancing chemotherapy response with sustained epha2 silencing using multistage vector delivery. Clin Cancer Res. 2013;19(7):1806-15.

  226. Xiao K, Li Y, Lee JS, Gonik AM, Dong T, Fung G, Sanchez E, Xing L, Cheng HR, Luo J, Lam KS. "OA02" peptide facilitates the precise targeting of paclitaxel-loaded micellar nanoparticles to ovarian cancer in vivo. Cancer Res. 2012;72(8):2100-10.

  227. Yang X, Iyer AK, Singh A, Milane L, Choy E, Hornicek FJ, Amiji MM, Duan Z. Cluster of differentiation 44 targeted hyaluronic acid based nanoparticles for mdr1 siRNA delivery to overcome drug resistance in ovarian cancer. Pharm Res. 2015;32(6):2097-109.

  228. Kulhari H, Pooja D, Kota R, Telukutla SR, Tabor RF, Shukla R, Adams DJ, Sistla R, Bansal V. Cyclic RGDfK peptide functionalized polymeric nanocarriers for targeting gemcitabine to ovarian cancer cells. Mol Pharma. 2016;13(5):1491-500.

  229. Matthaiou EI, Barar J, Sandaltzopoulos R, Li C, Coukos G, Omidi Y. Shikonin-loaded antibody-armed nanoparticles for targeted therapy of ovarian cancer. Int J Nanomed. 2014;9(10:1855-70.

  230. Yabbarov NG, Posypanova GA, Vorontsov EA, Obydenny SI, Severin ES. A new system for targeted delivery of doxorubicin into tumor cells. J Control Release. 2013;168(2):135-41.

  231. Zhu S, Hong M, Zhang L, Tang G, Jiang Y, Pei Y. Pegylated PAMAM dendrimer-doxorubicin conjugates: in vitro evaluation and in vivo tumor accumulation. Pharm Res. 2010;27(1):161-74.

  232. Schumann C, Taratula O, Khalimonchuk O, Palmer AL, Cronka LM, Jones CV, Escalante CA, Taratula O. ROS-induced nanotherapeutic approach for ovarian cancer treatment based on the combinatorial effect of photodynamic therapy and dj-1 gene suppression. Nanomedicine. 2015;11(8): 1961-70.

  233. Taratula O, Dania RK, Schumanna C, Xu H, Wang A, Song H, Dhagat P, Taratula O. Multifunctional nanomedicine platform for concurrent delivery of chemotherapeutic drugs and mild hyperthermia to ovarian cancer cells. Int J Pharm. 2013;458(1):169-80.

  234. Patra CR, Bhattacharya R, Mukherjee P. Fabrication and functional characterization of gold nano- conjugates for potential application in ovarian cancer. J Mater Chem. 2010;20(3):547-54.

  235. Bagley AF, Hill S, Rogers GS, Bhatia SN. Plasmonic photothermal heating of intraperitoneal tumors through the use of an implanted near-infrared source. ACS Nano. 2013;7(9):8089-97.

  236. Gurunathan S, Han JW, Park JH, Kim E, Choi YJ, Kwon DN, Kim JH. Reduced graphene oxide-silver nanoparticle nanocomposite: a potential anticancer Nanother Int J Nanomed. 2015;10:6257-76.

  237. Knezevic NZ, Lin VSY. A magnetic mesoporous silica nanoparticle-based drug delivery system for photosensitive cooperative treatment of cancer with a mesopore-capping agent and mesopore-loaded drug. Nanoscale. 2013;5(4):1544-51.

  238. Niu N, He F, Ma P, Gai S, Yang G, Qu F, Wang Y, Xu J, Yang P. Up-conversion nanoparticle assembled mesoporous silica composites: synthesis, plasmon-enhanced luminescence, and near-infrared light triggered drug release. Appl Mater Interf. 2014;6(5):3250-62.

  239. Wu CC, Yang YC, Hsu YT, Wu TC, Hung CF, Huang JT, Chang CL. Nanoparticle-induced intraperitoneal hyperthermia and targeted photoablation in treating ovarian cancer. Oncotarget. 2015;6(29):26861-75.

  240. Sanchez-Salcedo S, Vallet-Regia M, Shahin SA, Glackinc CA, Zink JI. Mesoporous core-shell silica nanoparticles with anti-fouling properties for ovarian cancer therapy. Chem Eng J. 2018;340: 114-24.

  241. Iijima S. Helical microtubules of graphitic carbon. Nature. 1991 Nov 7;354:56-8.

  242. Kam NWS, O Connell M, Wisdom JA, Dai H. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci. 2005;102(33):11600-5.

  243. Fang Y, Zheng G, Yang J, Tang H, Zhang Y, Kong B, Lv Y, Xu C, Asiri AM, Zi J, Zhang F, Zhao D. Dual-pore mesoporous carbon@silica composite core-shell nanospheres for multidrug delivery. Angewandte Chemie. 2014;126(21):5470-4.

  244. Sengupta A, Mezencev R, McDonald JF, Prausnitz MR. Delivery of siRNA to ovarian cancer cells using laser-activated carbon nanoparticles. Nanomed (Lond). 2015;10(11):1775-84.

  245. O'Farrell N, Houlton A, Horrocks BR. Silicon nanoparticles: applications in cell biology and medicine. Int J Nanomed. 2006;1(4):451-72.

  246. Kasaai MR. Nanosized particles of silica and its derivatives for applications in various branches of food and nutrition sectors. J Nanotechnol. 2015;2015: 852394.

  247. Bitar A, Ahmad NM, Fessi H, Elaissari A. Silica-based nanoparticles for biomedical applications. Drug Discov Today. 2012;17(19-20):1147-54.

  248. Hartono SB, Phuoc NT, Yu M, Jia Z, Monteiro MJ, Qiao S, Yu C. Functionalized large pore meso-porous silica nanoparticles for gene delivery featuring controlled release and co-delivery. J Mater Chem B. 2014;2(6):718-26.

  249. Yu M, Niu Y, Zhang J, Zhang H, Yang Y, Taran E, Jambhrunkar S, Gu W, Thorn P, Yu C. Size-dependent gene delivery of amine-modified silica nanoparticles. Nano Res. 2016;9(2):291-305.

  250. Malvindi MA, De Matteis V, Galeone A, Brunetti V, Anyfantis GC, Athanassiou A, Cingolani R, Pompa PP. Toxicity assessment of silica coated iron oxide nanoparticles and biocompatibility improvement by surface engineering. PLoS One. 2014;9(1):e85835.

  251. Zaitseva NV, Zemlianova MA, Zvezdin VN, Dovbysh AA, Gmoshinskii IV, Khotimchenko SA, Safenkova IV, Akaf'eva TI. Toxicological assessment of nanostructured silica. The acute oral toxicity. Vopr Pitan. 2014;83(2):42-9.

  252. Clement L, Zenerino A, Hurel C, Amigoni S, de Givenchy ET, Guittard F, Marmier N. Toxicity assessment of silica nanoparticles, functionalized silica nanoparticles, and HASE-grafted silica nano-particles. Sci Total Environ. 2013;450-451:120-8.

  253. Lee KY, Seow E, Zhang Y, Lim YC. Targeting CCL21-folic acid-upconversion nanoparticles conjugates to folate receptor-a expressing tumor cells in an endothelial-tumor cell bilayer model. Biomaterials. 2013;34(20):4860-71.

  254. Gao X, Xing Y, Chung LWK, Nie S. Quantum dot nanotechnology for prostate cancer research, in: biology, genetics, and the new therapeutics. In: Chung LWK, Isaacs WB, Simons JW, editors. Con-temporary cancer research: prostate cancer: biology, genetics, and the new therapeutics. Totowa, NJ: Humana Press; 2009. p. 231-44.

  255. Pericleous P, Gazouli M, Lyberopoulou A, Rizos S, Nikiteas N, Efstathopoulos EP. Quantum dots hold promise for early cancer imaging and detection. Int J Cancer. 2012;131(3):519-28.

  256. Yong KT, Law WC, Hu R, Ye L, Liu L, Swiharte MT, Prasad PN. Nanotoxicity assessment of quantum dots: from cellular to primate studies. Chem Soc Rev. 2013;42(3):1236-50.

  257. Wu T, Tang M. Toxicity of quantum dots on respiratory system. Inhal Toxicol. 2014;26(2):128-39.

  258. Diaz V, Ramirez-Maureira M, Monras JP, Vargas J, Bravo D, Osorio-Roman IO, Vasquez CC, Perez-Donoso JM. Spectroscopic properties and biocompatibility studies of cdte quantum dots capped with biological thiols. Sci Adv Mater. 2012;4(5-6):609-16.

  259. Yezhelyev MV, Al-Hajj A, Morris C, Marcus AI, Liu T, Lewis M, Cohen C, Zrazhevskiy P, Simons JW, Rogatko A, Nie S, Gao X, O'Regany RM. In situ molecular profiling of breast cancer biomarkers with multicolor quantum dots. Adv Mater. 2007;19(20):3146-51.

  260. Akerman ME, Chan WC, Laakkonen P, Bhatia SN, Ruoslahti E. Nanocrystal targeting in vivo. Proc Natl Acad Sci U S A. 2002;99:12617-21.

  261. Tokumasu F, Dvorak J. Development and application of quantum dots for immunocytochemistry of human erythrocytes. J Microsc. 2003;211(Pt 3):256-61.

  262. Wu X, Liu H, Liu J, Haley KN, Treadway JA, Larson JP, Ge N, Peale F, Bruchez MP. Immunofluo-rescent labeling of cancer marker HER2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol. 2003;21(1):41-6.

  263. Sukhanova A, Devy J, Venteo L, Kaplan H, Artemyev M, Oleinikov V, Klinov D, Pluot M, Cohen JH, Nabiev I. Biocompatible fluorescent nanocrystals for immunolabeling of membrane proteins and cells. Anal Biochem. 2004;324(1):60-7.

  264. Lidke DS, Nagy P, Heintzmann R, Arndt-Jovin DJ, Post JN, Grecco HE, Jares-Erijman EA, Jovin TM. Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction. Nat Biotechnol. 2004;22(20):198-203.

  265. Bruchez M Jr, Moronne M, Gin P, Weiss S, Alivisatos AP. Semiconductor nanocrystals as fluorescent biological labels. Science. 1998;281(5385):2013-6.

  266. Chen C, Peng J, Xia HS, Yang GF, Wu QS, Chen LD, Zeng LB, Zhang ZL, Pang DW, Li Y. Quantum dots-based immunofluorescence technology for the quantitative determination of HER2 expression in breast cancer. Biomaterials. 2009;30(15):2912-8.

  267. Pathak S, Choi SK, Arnheim N, Thompson ME. Hydroxylated quantum dots as luminescent probes for in situ hybridization. J Am Chem Soc. 2001;123(17):4103-4.

  268. Xiao Y, Barker PE. Semiconductor nanocrystal probes for human metaphase chromosomes. Nucleic Acids Res. 2004;32(3):e28.

  269. Mulder WJM, Castermans K, van Beijnum JR, Oude Egbrink MGA, Chin PTK, Fayad ZA, Lowik CWGM, Kaijzel EL, Que I, Storm G, Strijkers GJ, Griffioen AW, Nicolay K. Molecular imaging of tumor angiogenesis using avp3-integrin targeted multimodal quantum dots. Angioenesis. 2009;12(1):17-24.

  270. Yong KT, Ding H, Roy I, Law WC, Bergey EJ, Maitra A, Prasad PN. Imaging pancreatic cancer using bioconjugated InP quantum dots. ACS Nano. 2009;3(3):502-10.

  271. Smith BR, Cheng Z, De A, Koh AL, Sinclair R, Gambhir SS. Real-time intravital imaging of RGD-quantum dot binding to luminal endothelium in mouse tumor neovasculature. Nano Lett. 2008;8(9):2599-606.

  272. Parungo CP, Soybel DI, Colson YL, Kim SW, Ohnishi S, DeGrand AM, Laurence RG, Soltesz EG, Chen FY, Cohn LH, Bawendi MG, Frangioni JV. Lymphatic drainage of the peritoneal space: a pattern dependent on bowel lymphatics, Ann Surg Oncol. 2006;14(2):286-98.

  273. Shah BS, Clark PA, Moioli EK, Stroscio MA, Mao JJ. Labeling of mesenchymal stem cells by bio-conjugated quantum dots. Nano Lett. 2007;7(10):3071-9.

  274. Tada H, Higuchi H, Wanatabe TM, Ohuchi N. In vivo real-time tracking of single quantum dots conjugated with monoclonal anti-HER2 antibody in tumors of mice. Cancer Res. 2007;67(3):1138-44.

  275. Fonseca AC, Serra AC, Coelho JFJ. Bioabsorbable polymers in cancer therapy: latest development. EPMA J. 2015;6:22.

  276. Masood F. Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Mater Sci Eng C. 2016;60:569-78.

  277. Parveen S, Sahoo SK. Polymeric nanoparticles for cancer therapy. J Drug Targeting. 2008;16(2):108-23.

  278. Abeylath SC, Amiji M. "Click" synthesis of dextran macrostructures for combinatorial-designed self-assembled nanoparticles encapsulating diverse anticancer therapeutics. Bioorg Med Chem. 2011;19(21):6167-73.

  279. Wu Y, Chu Q, Tan S, Zhuang X, Bao Y, Wu T, Zhang Z. d-a-tocopherol polyethylene glycol succinate based derivative nanoparticles as a novel carrier for paclitaxel delivery. Int J Nanomed. 2015;10(1):5219-35.

  280. Doun SKB, Alavi SE, Esfahani MKM, Shahmabadi HE, Alavi F, Hamzei S. Efficacy of cisplatin-loaded poly butyl cyanoacrylate nanoparticles on the ovarian cancer: an in vitro study. Tumour Biol. 2014;35(8):7491-7.

  281. Sadhukha T, Prabha S. Encapsulation in nanoparticles improves anti-cancer efficacy of carboplatin. AAPS Pharm Sci Tech. 2014;15(4):1029-38.

  282. Li Z, Sun L, Lu Z, Su X, Yang Q, Qu X, Li L, Song K, Kong B. Enhanced effect of photodynamic therapy in ovarian cancer using a nanoparticle drug delivery system. Int J Oncol. 2015;47(3): 1070-6.

  283. Xiong XY, Guo L, Gong YC, Li ZL, Li YP, Liu ZY, Zhou M. In vitro and in vivo targeting behaviors of biotinylated pluronic F127/poly(lactic acid) nanoparticles through biotin-avidin interaction. Eur J Pharm Sci. 2012;46(5):537-44.

  284. Hamon CL, Dorsey CL, O'zel T, Barnes EM, Hudnall TW, Betancourt T. Near-infrared fluorescent aza-BODIPY dye-loaded biodegradable polymeric nanoparticles for optical cancer imaging. J Nanopart Res. 2016;18(7):207.

  285. He C, Liu D, Lin W. Self-assembled nanoscale coordination polymers carrying siRNAs and cisplatin for effective treatment of resistant ovarian cancer. Biomaterials. 2015;36:124-33.

  286. Xu H, Regino CAS, Koyama Y, Hama Y, Gunn AJ, Ernardo M, Kobayashi H, Choyke PL, Brechbiel MW. Preparation and preliminary evaluation of a biotin-targeted, lectin-targeted dendrimer-based probe for dual-modality magnetic resonance and fluorescence imaging. Bioconj Chem. 2007;18(5):1474-82.

  287. Chirwa N, Pillay V, Choonara YE, Kumar P, du Toit LC, inventors; University of the Witwatersrand, Johannesburg, assignee. Pharmaceutical composition. United States Patent US9220773. 2015 Dec 29.

  288. Akbarzadeh A, Samiee M, Davaran S. Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res Lett. 2012;7(1):144.

  289. Wahajuddin, Arora S. Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. Int J Nanomed. 2012;7:3445-71.

  290. Wu W, He Q, Jiang C. Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett. 2008;3(11):397-415.

  291. Javid A, Ahmadian S, Saboury AA, Kalantar SM, Zarchi SR, Shahzad S. Biocompatible APTES-PEG modified magnetite nanoparticles: effective carriers of antineoplastic agents to ovarian cancer. Appl Biochem Biotechnol. 2014;173(1):36-54.

  292. Tang QS, Chen DZ, Xue WQ, Xiang JY, Gong YC, Zhang L, Guo CQ. Preparation and biodistri-bution of 188Re-labeled folate conjugated human serum albumin magnetic cisplatin nanoparticles (188Re-folate-CDDP/HAS MNPs) in vivo. Int J Nanomed. 2011;6:3077-85.

  293. Navyatha B, Kumar R, Nara S. A facile method for synthesis of gold nanotubes and their toxicity assessment. J Environ Chem Eng. 2016;4(1):924-31.

  294. Biswas S, Tripathi P, Kumar N, Nara S. Gold nanorods as peroxidase mimetics and its application for colorimetric biosensing of malathion. Sens Actuators B. 2016;231:584-92.

  295. Singh S, Tripathi P, Kumar N, Nara S. Colorimetric sensing of malathion using palladium-gold bimetallic nanozyme. Biosens Bioelectron. 2017;92:280-6.

  296. Draz MS, Fang BA, Zhang P, Hu Z, Gu S, Weng KC, Gray JW, Chen FF. Nanoparticle-mediated systemic delivery of siRNA for treatment of cancers and viral infections. Theranostics. 2014;4(9): 872-92.

  297. Taratula O, Patel M, Schumann C, Naleway MA, Pang AJ, He H, Taratula O. Phthalocyanine-loaded graphene nanoplatform for imaging-guided combinatorial phototherapy. Int J Nanomed. 2015;10(1):2347-62.

  298. Ghosh D, Bagley AF, Na YJ, Birrere MJ, Bhatia SN, Belcher AM. Deep, noninvasive imaging and surgical guidance of submillimeter tumors using targeted M13-stabilized single-walled carbon nanotubes. PNAS. 2014;111(38):13948-53.

  299. Zhang R, Wu C, Tong L, Tang B, Xu QH. Multifunctional core-shell nanoparticles as highly efficient imaging and photosensitizing agents. Langmuir. 2009;25(17):10153-8.

  300. Huang S, Cheng Z, Ma P, Kang X, Daia Y, Lin J. Luminescent GdVO4:Eu3+ functionalized mesoporous silica nanoparticles for magnetic resonance imaging and drug delivery. Dalton Trans. 2013;42(18):6523-30.

  301. Lin CF, Wen CJ, Aljuffali IA, Huang CL, Fang JY. Quantiosomes as a multimodal nanocarrier for integrating bioimaging and carboplatin delivery. Pharm Res. 2014;31(10):2664-76.

  302. Savla R, Taratula O, Garbuzenko O, Minko T. Tumor targeted quantum dot-mucin 1 aptamer-doxorubicin conjugate for imaging and treatment of cancer. J Control Release. 2011;153(1):16-22.

  303. Taratula O, Schumann C, Duong T, Taylor KL, Taratula O. Dendrimer-encapsulated naphthalocya-nine as a single agent-based theranostic nanoplatform for near-infrared fluorescence imaging and combinatorial anticancer phototherapy. Nanoscale. 2015;7(9):3888-902.

  304. Pradhan L, Thakur B, Srivastava R, Ray P, Bahadur D. Assessing therapeutic potential of magnetic mesoporous nanoassemblies for chemo-resistant tumors. Theranostics. 2016;6(10):1557-72.

  305. Adesina SK, Holly A, Marek GK, Capala J, Akala EO. Polylactide-based paclitaxel-loaded nanopar-ticles fabricated by dispersion polymerization: characterization, evaluation in cancer cell lines, and preliminary biodistribution studies. Pharm Sci. 2014;103(8):2546-55.

  306. Chen W, Bardhan R, Bartelsa M, Torresf CP, Pautlera RG, Halas NJ, Joshi A. A molecularly targeted theranostic probe for ovarian cancer. Mol Cancer Ther. 2010;9(4):1028-38.

  307. Mehtala JG, Allen ST, Elzey BD, Jeon M, Kim C, Wei A. Synergistic effects of cisplatin chemotherapy and gold nanorod-mediated hyperthermia on ovarian cancer cells and tumors. Nanomed (Lond). 2014;9(13):1939-55.

  308. You J, Zhang R, Zhang G, Zhong M, Liu Y, Van Pelt CS, Liang D, Wei W, Sood AK, Li C. Photothermal-chemotherapy with doxorubicin-loaded hollow gold nanospheres: a platform for near-infrared light-trigged drug release. J Control Release. 2012;158(2):319-28.

  309. Farcau SB, Potara M, Simon T, Juhem A, Baldeck P, Astilean S. Folic acid-conjugated, SERS-labeled silver nanotriangles for multimodal detection and targeted photothermal treatment on human ovarian cancer cells. Mol Pharma. 2014;11(2):391-9.

  310. Potara M, Simon TN, Craciun AM, Suarasan S, Licarete E, Lucaci FI, Astilean S. Carboplatin-loaded, raman-encoded chitosan-coated silver nanotriangles as multimodal traceable nanotherapeutic delivery systems and pH reporters inside human ovarian cancer cells. ACS Appl Mater Interf. 2017;9(38):32565-76.

  311. Murthy SK. Nanoparticles in modern medicine: State of the art and future challenges. Int J Nanomed. 2007;2(2):129-41.

  312. Medina C, Santos-Martinez MJ, Radomski A, Corrigan OI, Radomski MW. Nanoparticles: pharmacological and toxicological significance. Br J Pharmacol. 2007;150(5):552-8.

  313. Elsaesser A, Howard CV. Toxicology of nanoparticles. Adv Drug Deliver Rev. 2012;64(2):129-37.

  314. Khan HA, Shanker R. Toxicity of nanomaterials. Biomed Res Int. 2015;2015:521014.

  315. Anderson DS, Sydor MJ, Fletcher P, Holian A. Nanotechnology: The risks and benefits for medical diagnosis and treatment. J Nanomed Nanotechnol. 2016;7:e143.

  316. Li X, Wang L, Fan Y, Feng Q, Cui F. Biocompatibility and toxicity of nanoparticles and nanotubes. J Nanomater. 2012;2012:548389.

  317. Garnett MC, Kallinteri P. Nanomedicines and nanotoxicology: some physiological principles. Occup Med (Lond). 2006;56(5):307-11.

  318. Jong WHD, Borm PJA. Drug delivery and nanoparticles: Applications and hazards. Int J Nanomed. 2008;3(2):133-49.

  319. Lewinski N, Colvin V, Drezek R. Cytotoxicity of nanoparticles. Small. 2008;4(1):26-49.

  320. Zhang XD, Wu HY, Wu D, Wang YY, Chan JH, Zhai ZB, Meng AM, Liu PX, Zhang LA, Fan FY. Toxicologic effects of gold nanoparticles in vivo by different administration routes. Int J Nanomed. 2010;5:771-81.

  321. Fu C, Liu T, Li L, Liu H, Chen D, Tang F. The absorption, distribution, excretion and toxicity of mesoporous silica nanoparticles in mice following different exposure routes. Biomaterials. 2013;34(10):2565-75.

  322. Verma A, Stellacci F. Effect of surface properties on nanoparticle-cell interactions. Small. 2010;6(1):12-21.

  323. Villanueva A, Canete M, Roca AG, Calero M, Verdaguer SV, Serna CJ, Morales MD, Miranda R. The influence of surface functionalization on the enhanced internalization of magnetic nanoparticles in cancer cells. Nanotechnology. 2009;20(11):103-15.

  324. Wilhelm C, Billotey C, Roger J, Pons JN, Bacri JC, Gazeau F. Intracellular uptake of anionic super-paramagnetic nanoparticles as a function of their surface coating. Biomaterials. 2003;24(6):1001-11.

  325. Duan X, Li Y. Physicochemical characteristics of nanoparticles affect circulation, biodistribution, cellular internalization, and trafficking. Small. 2013;9(9-10):1521-32.

  326. Wang Y, Black KCL, Luehmann H, Li W, Zhang Y, Cai X, Wan D, Liu SY, Li M, Kim P, Li ZY, Wang LV, Liu Y, Xia Y. Comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment. ACS Nano. 2013;7(3):2068-77.

  327. Jindal AB. The effect of particle shape on cellular interaction and drug delivery applications of micro- and nanoparticles. Int J Pharm. 2017;532(1):450-65.

  328. Yildirimer L, Thanh NTK, Loizidou M, Seifalian AM. Toxicology and clinical potential of nanoparticles. Nanotoday. 2011;6(6):585-607.

  329. Carlson C, Hussain SM, Schrand AM, Braydich-Stolle LK, Hess KL, Jones RL, Schlager JJ. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B. 2008;112(43):13608-19.

  330. Liu W, Wu Y, Wang C, Li HC, Wang T, Liao CY, Cui L, Zhou QF, Yan B, Jiang GB. Impact of silver nanoparticles on human cells: effect of particle size. Nanotoxicology. 2010;4(3):319-30.

  331. Park MVDZ, Neigh AM, Vermeulen JP, de la Fonteyne LJJ, Verharen HW, Briede JJ, van Loveren H, de Jong WH. The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials. 2011;32(36):9810-17.

  332. Greish K. Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. Methods Mol Biol. 2010;624:25-37.

  333. Stylianopoulos T. EPR-effect: utilizing size-dependent nanoparticle delivery to solid tumors. Ther Deliv. 2013;4(4):421-3.

  334. Prabhakar U, Maeda H, Jain RK, Muraca EVS, Zamboni W, Farokhzad OC, Barry ST, Gabizon A, Grodzinski P, Blakey DC. Challenges and key considerations of the enhanced permeability and retention (EPR) effect for nanomedicine drug delivery in oncology. Cancer Res. 2013;73(8):2412-41.

  335. Tobio M, Sanchez A, Vila A, Soriano II, Evora C, Vila-Jato JL, Alonso MJ. The role of PEG on the stability in digestive fluids and in vivo fate of PEG-PLA nanoparticles following oral administration. Colloids Surf B. 2000;18(3-4):315-23.

  336. Manson J, Kumar D, Meenan BJ, Dixon D. Polyethylene glycol functionalized gold nanoparticles: the influence of capping density on stability in various media. Gold Bulletin. 2011;44(2):99-105.

  337. Kreyling WG, Abdelmonem AM, Ali Z, Alves F, Geiser M, Haberl N, Hartmann R, Hirn S, de Aberasturi DJ, Kantner K, Saba GK, Montenegro JM, Rejman J, Rojo T, de Larramendi IR, Ufartes R, Wenk A, Parak WJ. In vivo integrity of polymer-coated gold nanoparticles. Nat Nanotechnol. 2015;10(7):619-23.

  338. Colombo AP, Briancon S, Lieto J, Fessi H. Project, design, and use of a pilot plant for nanocapsule production. Drug Dev Ind Pharm. 2001;27(1):1063-72.

  339. Tighe CJ, Cabrera RQ, Gruar RI, Darr JA. Scale up production of nanoparticles: continuous supercritical water synthesis of Ce-Zn oxides. Ind Eng Chem Res. 2013;52(16):5522-8.

  340. Paliwal R, Babu RJ, Palakurthi S. Nanomedicine scale-up technologies: feasibilities and challenges. AAPS Pharm Sci Tech. 2014;15(6):1527-34.

  341. Gdowski A, Johnson K, Shah S, Gryczynski I, Vishwanatha J, Ranjan A. Optimization and scale up of microfuidic nanolipomer production method for preclinical and potential clinical trials. J Nanobiotechnol. 2018;16(1):12.

  342. Saleh N, Yousaf Z. Tools and techniques for the optimized synthesis, reproducibility and scale up of desired nanoparticles from plant derived material and their role in pharmaceutical properties. In: Grumezescu AM, editor. Nanoscale fabrication, optimization, scale-up and biological aspects of pharmaceutical nano technology. Norwich: William Andrew Publishing and Elsevier; 2018. p. 85-131.

  343. Pedrosa P, Vinhas R, Fernandes A, Baptista PV. Gold nanotheranostics: proof-of-concept or clinical tool? Nanomaterials (Basel). 2015;5:1853-9.

  344. Bawa R. FDA and nanotech: baby steps lead to regulatory uncertainty. In: Bagchi D, Bagchi M, Moriyama H, Shahidi F, editors. Bio-nanotechnology: a revolution in food, biomedical and health sciences. New York: John Wiley & Sons; 2013. p. 720-32.

  345. Rahman Z, Charoo NA, Akhter S, Beg S, Reddy IK, Khan MA. Nanotechnology-based drug products: Science and regulatory considerations. In: Grumezescu AM, editor. Nanoscale fabrication, optimization, scale-up and biological aspects of pharmaceutical nanotechnology. Norwich: William Andrew Publishing and Elsevier; 2018. p. 619-55.

  346. National Science and Technology Council. National nanotechnology initiative strategic plan. 2016 [cited 2018 June 18]. Available from: http://www.nano.gov/sites/default/files/pub_resource/2016-nni-strategic-plan.pdf.

  347. Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer. 2017;17(1):20-37.

Articles with similar content:

Pancreatic Cancer: Recent Advances in Nanoformulation-Based Therapies
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.36, 2019, issue 1
Preshita Desai, Jeffrey Wang, Sunil Prabhu, David Ann
Development of Nanoscale Approaches for Ovarian Cancer Therapeutics and Diagnostics
Critical Reviews™ in Oncogenesis, Vol.19, 2014, issue 3-4
Magnus Bergkvist, Sarah A. Engelberth, Nadine Hempel
Lessons Learned from Gemcitabine: Impact of Therapeutic Carrier Systems and Gemcitabine’s Drug Conjugates on Cancer Therapy
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.34, 2017, issue 1
Sathish Dyawanapelly, Animesh Kumar, Manish K. Chourasia
Nanoparticles in Pancreatic Cancer Imaging and Therapy
Critical Reviews™ in Oncogenesis, Vol.24, 2019, issue 2
L. V. K. S. Bhaskar, Gayathri Chalikonda, Saikrishna Lakkakula
Oral Squamous Cell Carcinoma: Current Treatment Strategies and Nanotechnology-Based Approaches for Prevention and Therapy
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.33, 2016, issue 4
Munira Momin, Chintan Bhavsar, Sankalp A. Gharat