Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Critical Reviews™ in Therapeutic Drug Carrier Systems
Импакт фактор: 2.9 5-летний Импакт фактор: 3.72 SJR: 0.736 SNIP: 0.551 CiteScore™: 2.43

ISSN Печать: 0743-4863
ISSN Онлайн: 2162-660X

Выпуски:
Том 36, 2019 Том 35, 2018 Том 34, 2017 Том 33, 2016 Том 32, 2015 Том 31, 2014 Том 30, 2013 Том 29, 2012 Том 28, 2011 Том 27, 2010 Том 26, 2009 Том 25, 2008 Том 24, 2007 Том 23, 2006 Том 22, 2005 Том 21, 2004 Том 20, 2003 Том 19, 2002 Том 18, 2001 Том 17, 2000 Том 16, 1999 Том 15, 1998 Том 14, 1997 Том 13, 1996 Том 12, 1995

Critical Reviews™ in Therapeutic Drug Carrier Systems

DOI: 10.1615/CritRevTherDrugCarrierSyst.2016018537
pages 569-589

Advanced Implantable Drug Delivery Systems via Continuous Manufacturing

Mohammed Maniruzzaman
Pharmaceutics Research Lab, School of Life Sciences, University of Sussex, Sussex, UK
Ali Nokhodchi
Pharmaceutics Research Lab, School of Life Sciences, University of Sussex, Sussex, UK; Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran

Краткое описание

Polymeric implantable drug delivery systems have remarkable potential for systemic delivery of various therapeutic agents. Generally, drug-loaded implants do not require a vehicle for delivery and can be used to attain prolonged delivery into the systemic circulation of active pharmaceutical ingredients (APIs) with enhanced drug bioavailability. Furthermore, implants can provide drug release ranging from months to years, which improves patient compliance, especially for poorly bioavailable and rapidly metabolized compounds. Continuous manufacturing technology (e.g., hot-melt extrusion, or HME) has been successfully employed to prepare drug-loaded single-unit polymeric implants. Employing heat and mechanical shear, such systems retain the stability of thermolabile therapeutics (e.g., proteins) in implants. HME has emerged as important because of its varied applications that combine economic viability with solvent-free and easy scale-up processing. Moreover, it has been recognized from a quality-by-design (QbD) viewpoint by the FDA.


Articles with similar content:

Review Article: Fabricated Microparticles: An Innovative Method to Minimize the Side Effects of NSAIDs in Arthritis
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.33, 2016, issue 5
Shaivad Shabee Hulhasan Abadi, Afrasim Moin, Gangadharappa Hosahalli Veerabhadrappa
Polyphosphates and Other Phosphorus-Containing Polymers for Drug Delivery Applications
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.20, 2003, issue 4
Stephanie T. Lopina, Duane F. Bruley, Mahesh V. Chaubal, Anirban Sen Gupta
Recent Developments in the Use of Bioadhesive Systems for Delivery of Drugs to the Oral Cavity
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.21, 2004, issue 4
John D. Smart
Immunoisolation Cell Therapy for CNS Diseases
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.18, 2001, issue 3
Shelly R. Winn, Dwaine F. Emerich
Biopolymers as Transdermal Drug Delivery Systems in Dermatology Therapy
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.27, 2010, issue 2
M.A. Navya, K. H. Basavaraj, Siddaramaiah, George Johnsy, R. Rashmi