Доступ предоставлен для: Guest
Critical Reviews™ in Therapeutic Drug Carrier Systems
Главный редактор: Mandip Sachdeva Singh (open in a new tab)

Выходит 6 номеров в год

ISSN Печать: 0743-4863

ISSN Онлайн: 2162-660X

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 2.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 3.6 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.8 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00023 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.39 SJR: 0.42 SNIP: 0.89 CiteScore™:: 5.5 H-Index: 79

Indexed in

Reassessment of Therapeutic Applications of Carbon Nanotubes: A Majestic and Futuristic Drug Carrier

Том 37, Выпуск 4, 2020, pp. 331-373
DOI: 10.1615/CritRevTherDrugCarrierSyst.2020032570
Get accessGet access

Краткое описание

Carbon nanotubes (CNTs) have been identified as one of the most advanced and versatile nanovectors, theranostics, and futuristic drug delivery tools for highly effective delivery of genes, drugs, and biomolecules, as well as for use in bioimaging and as biosensors. CNTs have drawn tremendous attention and interest from researchers worldwide in the past two decades owing to a number of unique characteristics including well defined physicochemical properties, large surface area, in addition to exclusive electrical and optical properties. Numerous recent literature related to the design and applications of CNTs were studied and summarized accordingly. Special emphasis was given for the applications of CNTs in drug targeting. Specific targeting of anticancer drugs such as cisplatin, doxorubicin, taxol, gemcitabine, and methotrexate, and delivery of small interfering RNA, micro-RNA, as well as plasmid DNA have been successfully assisted using CNTs. All the major applications of CNTs were summarized in detail with possible toxicity concerns associated with them. As far as their toxicity is concerned, it was noticed that the functionalized CNTs pose little toxicity and do not have immunogenic effects. In conclusion, CNTs showed great potential in developing a new generation of carriers for various drugs and related biomolecules. The application of CNTs ranges from physics to chemistry and now they are expanding their roles in the therapeutic drug delivery in the modern healthcare system. With applications in every imaginable route of administration, CNTs bring therapeutic benefits to society. The pharmaceutical, biopharmaceutical, pharmacokinetic, pharmacodynamic, and clinical efficacy of CNTs is explored in detail in this review.

ЛИТЕРАТУРА
  1. Sahoo SK, Labhasetwar V. Nanotech approaches to drug delivery and imaging. Drug Discov Today. 2003;8(24):1112-200.

  2. Rahman Z, Kohli K, Khar RK, Ali M, Charoo NA, Shamsher AAA. Characterization of 5-fluorouracil microspheres for colonic delivery. AAPS PharmSciTech. 20067(2):E113-21.

  3. Ansari MJ, Kohli K, Dixit N. Microemulsions as potential drug delivery systems: A review. PDA J Pharm Sci Technol. 2008;62(1):66-79.

  4. Motwani SK, Chopra S, Talegaonkar S, Kohli K, Ahmad FJ, Khar RK. Chitosan-sodium alginate nanoparticles as submicroscopic reservoirs for ocular delivery: Formulation, optimisation and in vitro characterisation. Eur J Pharm Biopharm. 2008;68(3):513-25.

  5. Neupane YR, Sabir MD, Ahmad N, Ali M, Kohli K. Lipid drug conjugate nanoparticle as a novel lipid nanocarrier for the oral delivery of decitabine: Ex vivo gut permeation studies. Nanotechnology. 2013;24(41):415102.

  6. Kohli K, Chopra S, Dhar D, Arora S, Khar RK. Self-emulsifying drug delivery systems: An approach to enhance oral bioavailability. Drug Discov Today. 2010;15(21-22):958-65.

  7. Chaudhary H, Kohli K, Kumar VK. Nano-transfersomes as a novel carrier for transdermal delivery. Int J Pharm. 2013;454(1):367-80.

  8. Ahad A, Aqil M, Kohli K, Sultana Y, Mujeeb M. Enhanced transdermal delivery of an anti-hypertensive agent via nanoethosomes: Statistical optimization, characterization and pharmacokinetic assessment. Int J Pharm. 2013;443(1-2):26-38.

  9. Ahmad J, Kohli K, Mir SR, Amin S. Lipid based nanocarriers for oral delivery of cancer chemotherapeutics: An insight in the intestinal lymphatic transport. Drug Deliv Lett. 2013;3(1):38-46.

  10. Lim ZZJ, Li JEJ, Ng CT, Yung LYL, Bay BH. Gold nanoparticles in cancer therapy. Acta Pharmacol Sin. 2011;32(8):983-90.

  11. Chauhan AS. Dendrimers for drug delivery. Molecules. 2018;23(4):E938.

  12. Qi L, Gao X. Emerging application of quantum dots for drug delivery and therapy. Expert Opin Drug Deliv. 2008;5(3):263-7.

  13. Bacon GE. A note on the rhombohedral modification of graphite. Acta Crystallogr. 1950;3(4):320.

  14. Radushkevich LV, Lukyanovich VM. The structure of carbon forming in thermal decomposition of carbon monoxide on an iron catalyst. Russ J Phys Chem. 1952;26:88-95.

  15. Oberlin A, Endo M, Koyama T. Filamentous growth of carbon through benzene decomposition. J Cryst Growth. 1976;32:335-49.

  16. Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354(6348):56-8.

  17. Awadallah-F A, Al-Muhtaseb S. Carbon nanoparticles-decorated carbon nanotubes. Sci Rep. 2020;10(1):1-7.

  18. Aboofazeli R, Hadidi N, Kobarfard F, Nafissi-Varcheh N. Optimization of single-walled carbon nanotube solubility by noncovalent PEGylation using experimental design methods. Int J Nanomed. 2011;6:737-46.

  19. Mitchell DT, Lee SB, Trofin L, Li N, Nevanen TK, Soderlund H, Martin CR. Smart nanotubes for bioseparations and biocatalysis. J Am Chem Soc. 2002;124(40):11864-5.

  20. Pastorin G, Wu W, Wieckowski S, Briand JP, Kostarelos K, Prato M, Bianco A. Double functionalization of carbon nanotubes for multimodal drug delivery. Chem Commun (Camb). 2006;(11):1182-4.

  21. Benincasa M, Pacor S, Wu W, Prato M, Bianco A, Gennaro R. Antifungal activity of amphotericin B conjugated to carbon nanotubes. ACS Nano. 2011;5(1):199-208.

  22. Bashiz RT, Monajjemi M. Carbon nanotubes as the specific drug delivery for sulfonamides antibiotics: Instead of injection. J Comput Theor Nanosci. 2015;12(10):3808-16.

  23. Pantarotto D, Partidos CD, Graff R, Hoebeke J, Briand JP, Prato M, Bianco A. Synthesis, structural characterization, and immunological properties of carbon nanotubes functionalized with peptides. J Am Chem Soc. 2003;125(20):6160-4.

  24. McDevitt MR, Chattopadhyay D, Kappel BJ, Jaggi JS, Schiffman SR, Antczak C, Njardarson JT, Brentjens R, Scheinberg DA. Tumor targeting with antibody-functionalized, radiolabeled carbon nanotubes. J Nucl Med. 2007;48(7):1180-9.

  25. Dong H, Ding L, Yan F, Ji H, Ju H. The use of polyethylenimine-grafted graphene nanoribbon for cellular delivery of locked nucleic acid modified molecular beacon for recognition of microRNA. Biomaterials. 201132(15):3875-82.

  26. Varkouhi AK, Foillard S, Lammers T, Schiffelers RM, Doris E, Hennink WE, Storm G. SiRNA delivery with functionalized carbon nanotubes. Int J Pharm. 2011;416(2):419-25.

  27. Hao Y, Xu P, He C. Impact of carbondiimide crosslinker used for magnetic carbon nanotube mediated GFP plasmid delivery. Nanotechnology. 2011;22(28):285103.

  28. Dong L, Park JG, Leonhardt BE, Zhang S, Liang R. Continuous synthesis of double-walled carbon nanotubes with water-assisted floating catalyst chemical vapor deposition. Nanomaterials (Basel). 2020 Feb 20;10(2):365.

  29. Beg S, Rizwan M, Sheikh AM, Hasnain MS, Anwer K, Kohli K. Advancement in carbon nanotubes: Basics, biomedical applications and toxicity. J Pharm Pharmacol. 2011;63(2):141-63.

  30. Georgakilas V, Perman JA, Tucek J, Zboril R. Broad family of carbon nanoallotropes: Classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem Rev. 2015;115(11):4744-822.

  31. Hirlekar R, Yamagar M, Garse H, Vij M, Kadam V. Carbon nanotubes and its applications: A review. Asian J Pharm Clin Res. 2009;2(4):17-27.

  32. Grobert N. Carbon nanotubes-becoming clean. Materials Today. 2007;10(1):28-35.

  33. Charlier A, McRae E, Heyd R, Charlier MF, Moretti D. Classification for double-walled carbon nanotubes. Carbon. 1999;37(11):1779-83.

  34. Ebbesen TW. Carbon nanotubes. Annu Rev Mater Sci. 1994;24(1):235-64.

  35. Dresselhaus G, Nakao K. Electronic and lattice properties of carbon nanotubes. J Phys Soc Japan. 1994 Nov 29;63(6):2252-60.

  36. Dresselhaus MS, Dresselhaus G, Saito R, Jorio A. Raman spectroscopy of carbon nanotubes. Phys Rep. 2005;409(2):47-99.

  37. Chen JH, Li WZ, Wang DZ, Yang SX, Wen JG, Ren ZF. Electrochemical characterization of carbon nanotubes as electrode in electrochemical double-ayer capacitors. Carbon. 2002;40(8):1193-7.

  38. Shaffer MSP, Windle AH. Fabrication and characterization of carbon nanotube/poly(vinyl alcohol) composites. Adv Mater. 1999;11(11):937-41.

  39. Mahapatra AK, Murthy PN, Samoju S, Mohapatra AK. Tiny technology proves big: A challenge at engineering, medicine and pharmaceutical sciences interface. Crit Rev Ther Drug Carrier Syst. 2014;31(1):1-47.

  40. Chen J, Liu H, Weimer WA, Halls MD, Waldeck DH, Walker GC. Noncovalent engineering of carbon nanotube surfaces by rigid, functional conjugated polymers. J Am Chem Soc. 2002;124(31): 9034-5.

  41. Barisci JN, Tahhan M, Wallace GG, Badaire S, Vaugien T, Maugey M, Poulin P. Properties of carbon nanotube fibers spun from DNA-stabilized dispersions. Adv Funct Mater. 2004;14(2):133-8.

  42. Dang ZM, Wang L, Zhang LP. Surface functionalization of multiwalled carbon nanotube with trifluorophenyl. J Nanomater. 2006;83583:1-5.

  43. Fischer JE. Chemical doping of single-wall carbon nanotubes. Acc Chem Res. 2002;35(12):1079-86.

  44. Hu H, Zhao B, Hamon MA, Kamaras K, Itkis ME, Haddon RC. Sidewall functionalization of single-walled carbon nanotubes by addition of dichlorocarbene. J Am Chem Soc. 2003;125(48):14893-900.

  45. Unger E, Graham A, Kreupl F, Liebau M, Hoenlein W. Electrochemical functionalization of multiwalled carbon nanotubes for solvation and purification. Curr Appl Phys. 2002;2(2):107-11.

  46. Kim WJ, Nair N, Lee CY, Strano MS. Covalent functionalization of single-walled carbon nanotubes alters their densities allowing electronic and other types of separation. J Phys Chem C. 2008;112(19):7326-31.

  47. Tagmatarchis N, Prato M. Functionalization of carbon nanotubes via 1,3-dipolar cycloadditions. J Mater Chem. 2004;14(4):437-9.

  48. Bianco A, Kostarelos K, Partidos CD, Prato M. Biomedical applications of functionalized carbon nanotubes. Chem Commun (Camb). 2005 Feb 7;(5):571-7.

  49. Sham ML, Kim JK. Surface functionalities of multi-wall carbon nanotubes after UV/Ozone and TETA treatments. Carbon. 2006;44(4):768-77.

  50. Ma PC, Kim JK, Tang BZ. Functionalization of carbon nanotubes using a silane coupling agent. Carbon. 2006;44(15):3232-8.

  51. Coleman JN, Khan U, Gun'ko YK. Mechanical reinforcement of polymers using carbon nanotubes. Adv Mater. 2006;18(6):689-706.

  52. Banerjee S, Hemraj-Benny T, Wong SS. Covalent Surface chemistry of single-walled carbon nanotubes. adv mater. 2005;17(1):17-29.

  53. Hu C-Y, Xu Y-J, Duo S-W, Zhang R-F, Li M-S. Non-covalent functionalization of carbon nanotubes with surfactants and polymers. J Chinese Chem Soc. 2009;56(2):234-9.

  54. Bilalis P, Katsigiannopoulos D, Avgeropoulos A, Sakellariou G. Non-covalent functionalization of carbon nanotubes with polymers. RSC Adv. 2014;4(6):2911-34.

  55. Ma PC, Siddiqui NA, Marom G, Kim JK. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. Compos Part A Appl Sci Manuf. 2010;41:1345-67.

  56. Gong X, Liu J, Baskaran S, Voise RD, Young JS. Surfactant-assisted processing of carbon nanotube polymer composites. Chem Mater. 2000;12(4):1049-52.

  57. Islam MF, Rojas E, Bergey DM, Johnson AT, Yodh AG. High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Lett. 2003;3(2):269-73.

  58. Whitsitt EA, Barron AR. Silica coated single walled carbon nanotubes. Nano Lett. 2003;3(6):775-8.

  59. Cheng F, Adronov A. Noncovalent functionalization and solubilization of carbon nanotubes by using a conjugated Zn-porphyrin polymer. Chem Eur J. 2006;12(19):5053-9.

  60. Star A, Liu Y, Grant K, Ridvan L, Stoddart JF, Steuerman DW, Diehl MR, Boukai A, Heath JR. Noncovalent side-wall functionalization of single-walled carbon nanotubes. Macromolecules. 2003;36(3):553-60.

  61. Steuerman DW, Star A, Narizzano R, Choi H, Ries RS, Nicolini C, Stoddart JF, Heath JR. Interactions between conjugated polymers and single-walled carbon nanotubes. J Phys Chem B. 2002;106(12):3124-30.

  62. Gigliotti B, Sakizzie B, Bethune DS, Shelby RM, Cha JN. Sequence-independent helical wrapping of single-walled carbon nanotubes by long genomic DNA. Nano Lett. 2006;6(2):159-64.

  63. Kelley K, Pehrsson PE, Ericson LM, Zhao W. Optical pH response of DNA wrapped HiPco carbon nanotubes. J Nanosci Nanotechnol. 2005;5(7):1041-4.

  64. Balavoine F, Schultz P, Richard C, Mallouh V, Ebbesen TW, Mioskowski C. Helical crystallization of proteins on carbon nanotubes: A first step towards the development of new biosensors. Angew Chemie Int Ed. 1999;38(13-14):1912-5.

  65. Tasis D, Tagmatarchis N, Bianco A, Prato M. Chemistry of carbon nanotubes. Chem Rev. 2006;106:1105-36.

  66. Mali N, Jadhav S, Karpe M, Kadam V. Carbon nanotubes as carriers for delivery of bioactive and therapeutic agents: An overview. Int J Pharm Pharm Sci. 2011;3:4552.

  67. Singh P, Tripathi RM, Saxena A. Synthesis of carbon nanotubes and their biomedical application. J Optoelectron Biomed Mater. 2010;2:918.

  68. Madani SY, Naderi N, Dissanayake O, Tan A, Seifalian AM. A new era of cancer treatment: Carbon nanotubes as drug delivery tools. Int J Nanomed. 2011;6:2963-79.

  69. Dyawanapelly S, Kumar A, Chourasia MK. Lessons learned from gemcitabine: Impact of therapeutic carrier systems and gemcitabine's drug conjugates on cancer therapy. Crit Rev Ther Drug Carrier Syst. 2017;34(1):63-9.

  70. Ashfaq UA, Riaz M, Yasmeen E, Yousaf M. Recent advances in nanoparticle-based targeted drug-delivery systems against cancer and role of tumor microenvironment. Crit Rev Ther Drug Carrier Syst. 2017;34(1):317-53.

  71. Kesharwani P, Ghanghoria R, Jain NK. Carbon nanotube exploration in cancer cell lines. Drug Discov Today. 2012;17(17-18):1023-30.

  72. Liu X, Tao H, Yang K, Zhang S, Lee ST, Liu Z. Optimization of surface chemistry on single-walled carbon nanotubes for in vivo photothermal ablation of tumors. Biomaterials. 2011;32(1):144-51.

  73. Siu KS, Chen D, Zheng X, Zhang X, Johnston N, Liu Y, Yuan K, Koropatnick J, Gillies ER, Min WP. Non-covalently functionalized single-walled carbon nanotube for topical siRNA delivery into melanoma. Biomaterials. 2014;35(10):3435-42.

  74. Abdolahad M, Sanaee Z, Janmaleki M, Mohajerzadeh S, Abdollahi M, Mehran M. Vertically aligned multiwall-carbon nanotubes to preferentially entrap highly metastatic cancerous cells. Carbon. 2012;50(5):2010-7.

  75. Taghdisi SM, Lavaee P, Ramezani M, Abnous K. Reversible targeting and controlled release delivery of daunorubicin to cancer cells by aptamer-wrapped carbon nanotubes. Eur J Pharm Biopharm. 2011;77(2):200-6.

  76. Vittorio O, Raffa V, Cuschieri A. Influence of purity and surface oxidation on cytotoxicity of multi-walled carbon nanotubes with human neuroblastoma cells. Nanomedicine. 2009;5(4):424-31.

  77. Huang YP, Lin IJ, Chen CC, Hsu YC, Chang CC, Lee MJ. Delivery of small interfering RNAs in human cervical cancer cells by polyethylenimine-functionalized carbon nanotubes. Nanoscale Res Lett. 2013;8(1):1-11.

  78. Li R, Wu R, Zhao L, Hu Z, Guo S, Pan X, Zou H. Folate and iron difunctionalized multiwall carbon nanotubes as dual-targeted drug nanocarrier to cancer cells. Carbon. 2011;49(5):1797-805.

  79. Mocan T, Matea CT, Cojocaru I, Ilie I, Tabaran FA, Zaharie F, Iancu C, Bartos D, Mocan L. Photothermal treatment of human pancreatic cancer using PEGylated multi-walled carbon nano-tubes induces apoptosis by triggering mitochondrial membrane depolarization mechanism. J Cancer. 2014;5(8):679-88.

  80. Neves V, Heister E, Costa S, Tilmaciu C, Flahaut E, Soula B, Coley HM, McFadden J, Silva SRP. Design of double-walled carbon nanotubes for biomedical applications. Nanotechnology. 2012;23(36):365102.

  81. Neves AF, Dias-Oliveira JDD, Araujo TG, Marangoni K, Goulart LR. Prostate cancer antigen 3 (PCA3) RNA detection in blood and tissue samples for prostate cancer diagnosis. Clin Chem Lab Med. 2013;51(4):881-7.

  82. Zakrzewska KE, Samluk A, Wierzbicki M, Jaworski S, Kutwin M, Sawosz E, Chwalibog A, Pijanowska DG, Pluta KD. Analysis of the cytotoxicity of carbon-based nanoparticles, diamond and graphite, in human glioblastoma and hepatoma cell lines. PLoS One. 2015;10(3):e0122579.

  83. Lu YJ, Wei KC, Ma CCM, Yang SY, Chen JP. Dual targeted delivery of doxorubicin to cancer cells using folate-conjugated magnetic multi-walled carbon nanotubes. Colloids Surf B. 2012;89(1): 1-9.

  84. Chen H, Ma X, Li Z, Shi Q, Zheng W, Liu Y, Wang P. Functionalization of single-walled carbon nanotubes enables efficient intracellular delivery of siRNA targeting MDM2 to inhibit breast cancer cells growth. Biomed Pharmacother. 2012;66(5):334-8.

  85. Jeyamohan P, Hasumura T, Nagaoka Y, Yoshida Y, Maekawa T, Sakthi Kumar D. Accelerated killing of cancer cells using a multifunctional single-walled carbon nanotube-based system for targeted drug delivery in combination with photothermal therapy. Int J Nanomedicine. 2013;8:2653-67.

  86. Shao W, Paul A, Zhao B, Lee C, Rodes L, Prakash S. Carbon nanotube lipid drug approach for targeted delivery of a chemotherapy drug in a human breast cancer xenograft animal model. Biomaterials. 2013;34(38):10109-19.

  87. Arora S, Kumar R, Kaur H, Rayat CS, Kaur I, Arora SK, Srivastava J, Bharadwaj LM. Translocation and toxicity of docetaxel multi-walled carbon nanotube conjugates in mammalian breast cancer cells. J Biomed Nanotechnol. 2014;10(12):3601-9.

  88. Kim SY, Hwang JY, Seo JW, Shin US. Production of CNT-taxol-embedded PCL microspheres using an ammonium-based room temperature ionic liquid: As a sustained drug delivery system. J Colloid Interface Sci. 2015;442:147-53.

  89. Liu H-L, Zhang Y-L, Yang N, Zhang Y-X, Liu X-Q, Li C-G, Zhao Y, Wang Y-G, Zhnag G-G, Yang P, Guo F, Sun Y, Jiang C-Y. A functionalized single-walled carbon nanotubeinduced autophagic cell death in human lung cells through Akt-TSC2-mTOR signaling. Cell Death Dis. 2011;2(5):e159.

  90. Gu YJ, Cheng J, Jin J, Cheng SH, Wong WT. Development and evaluation of pH-responsive single-walled carbon nanotube-doxorubicin complexes in cancer cells. Int J Nanomed. 2011;6:2889-98.

  91. Neagoe IB, Braicu C, Matea C, Bele C, Florin G, Gabriel K, Veronica C, Irimie A. Efficient siRNA delivery system using carboxilated single-wall carbon nanotubes in cancer treatment. J Biomed Nanotechnol. 2012;8(4):567-74.

  92. Ji Z, Lin G, Lu Q, Meng L, Shen X, Dong L, Fu C, Zhang X. Targeted therapy of SMMC-7721 liver cancer in vitro and in vivo with carbon nanotubes based drug delivery system. J Colloid Interface Sci. 2012;365(1):143-9.

  93. Yang F, Jin C, Yang D, Jiang Y, Li J, Di Y, Hu J, Wang C, Ni Q, Fu D. Magnetic functionalised carbon nanotubes as drug vehicles for cancer lymph node metastasis treatment. Eur J Cancer. 2011;47(12):1873-82.

  94. Liu J, Wang C, Wang X, Wang X, Cheng L, Li Y, Liu Z. Mesoporous silica coated single-walled carbon nanotubes as a multifunctional light-responsive platform for cancer combination therapy. Adv Funct Mater. 2015;25(3):384-92.

  95. Singh R, Torti SV. Carbon nanotubes in hyperthermia therapy. Adv Drug Deliv Rev. 2013;65(15):2045-2060.

  96. Lin Z, Liu Y, Ma X, Hu S, Zhang J, Wu Q, Ye W, Zhu S, Yang D, Qu D, Jiang J. Photothermal ablation of bone metastasis of breast cancer using PEGylated multi-walled carbon nanotubes. Sci Rep. 2015;5:11709.

  97. Xie L, Wang G, Zhou H, Zhang F, Guo Z, Liu C, Zhang X, Zhu L. Functional long circulating single walled carbon nanotubes for fluorescent/photoacoustic imaging-guided enhanced phototherapy. Biomaterials. 2016;103:219-28.

  98. Antaris AL, Robinson JT, Yaghi OK, Hong G, Diao S, Luong R, Dai H. Ultra-low doses of chirality sorted (6,5) carbon nanotubes for simultaneous tumor imaging and photothermal therapy. ACS Nano. 2013;7(4):3644-52.

  99. Srikanth M, Kessler JA. Nanotechnology-novel therapeutics for CNS disorders. Nat Rev Neurol. 2012;8(6):307-18.

  100. Saraiva C, Praja C, Ferreira R, Santos T, Ferreira L, Bernardino L. Nanoparticle-mediated brain drug delivery: Overcoming blood-brain barrier to treat neurodegenerative diseases. J Control Release. 2016;235:34-47.

  101. Redondo-Gomez C, Leandro-Mora R, Blanch-Bermudez D, Espinoza-Araya C, Hidalgo-Barrantes D, Vega-Baudrit J. Recent advances in carbon nanotubes for nervous tissue regeneration. Adv Polym Technol. 2020.

  102. Nunes A, Al-Jamal K, Nakajima T, Hariz M, Kostarelos K. Application of carbon nanotubes in neurology: Clinical perspectives and toxicological risks. Arch Toxicol. 2012;86(7):1009-20.

  103. John AA, Subramanian AP, Vellayappan MV, Balaji A, Mohandas H, Jaganathan SK. Carbon nano-tubes and graphene as emerging candidates in neuroregeneration and neurodrug delivery. Int J Nanomed. 2015;10:4267-77.

  104. Ceriani M, Amigoni L, D'Aloia A, Berruti G, Martegani E. The deubiquitinating enzyme UBPy/USP8 interacts with TrkA and inhibits neuronal differentiation in PC12 cells. Exp Cell Res. 2015;333(1):49-59.

  105. Zeng X, Qiu X-C, Ma YH, Duan J-J, Chen Y-F, Gu H-Y, Wang J-M, Ling E-A, Wu J-L, Wu W, Zeng Y-S. Integration of donor mesenchymal stem cell-derived neuron-like cells into host neural network after rat spinal cord transection. Biomaterials. 2015;53:184-201.

  106. Chen YS, Hsiue GH. Directing neural differentiation of mesenchymal stem cells bycarboxylated multiwalled carbon nanotubes. Biomaterials. 2013;34(21):4936-44.

  107. Han F, Wang W, Chen B, Chen C, Li S, Lu X, Duan J, Zhnag Y, Zhang YA, Guo W, Li G. Human induced pluripotent stem cell-derived neurons improve motor asymmetry in a 6-hydroxydopamine-induced rat model of Parkinson's disease. Cytotherapy. 2015;17(5):665-79.

  108. Du C, Narayanan K, Leong MF, Wan ACA. Induced pluripotent stem cell-derived hepatocytes and endothelial cells in multi-component hydrogel fibers for liver tissue engineering. Biomaterials. 2014;35(23):6006-14.

  109. Moon S-H, Ban K, Kim C, Kim S-S, Byun J, Song M-K, Park I-H, Yu SP, Yoon Y-S. Development of a novel two-dimensional directed differentiation system for generation of cardiomyocytes from human pluripotent stem cells. Int J Cardiol. 2013;168(1):41-52.

  110. Jin GZ, Kim M, Shin US, Kim HW. Neurite outgrowth of dorsal root ganglia neurons is enhanced on aligned nanofibrous biopolymer scaffold with carbon nanotube coating. Neurosci Lett. 2011;501(1):10-4.

  111. Mattson MP, Haddon RC, Rao AM. Molecular functionalization of carbon nanotubes and use as sub-strates for neuronal growth. J Mol Neurosci. 2000;14(3):175-82.

  112. Scapin G, Salice P, Tescari S, Menna E, De Filippis V, Filippini F. Enhanced neuronal cell differentiation combining biomimetic peptides and a carbon nanotube-polymer scaffold. Nanomedicine. 2015;11(3):621-32.

  113. Lee JH, Lee JY, Yang SH, Lee EJ, Kim HW. Carbon nanotube-collagen three-dimensional culture of mesenchymal stem cells promotes expression of neural phenotypes and secretion of neurotrophic factors. Acta Biomater. 2014;10(10):4425-36.

  114. Beyeler S, Steiner S, Wotzkow C, Tschanz SA, Adhanom Sengal A, Wick P, Haenni B, Alves MP, Garnier C, Blank F. Multi-walled carbon nanotubes activate and shift polarization of pulmonary macrophages and dendritic cells in an in vivo model of chronic obstructive lung disease. Nanotoxicology. 2020;14(1):77-96.

  115. Ahn H-S, Hwang J-Y, Kim MS, Lee J-Y, Kim J-W, Kim H-S, Shin US, Knowles JC, Kim H-W, Hyun JK. Carbon-nanotube-interfaced glass fiber scaffold for regeneration of transected sciatic nerve. Acta Biomater. 2015;13:324-34.

  116. Luo X, Weaver CL, Zhou DD, Greenberg R, Cui XT. Highly stable carbon nanotube doped poly(3,4-ethylenedioxythiophene) for chronic neural stimulation. Biomaterials. 2011;32(24):5551-7.

  117. Wu W, Wieckowski S, Pastorin G, Benincasa M, Klumpp C, Briand J-P, Gennaro R, Prato M, Bianco A. Targeted delivery of amphotericin B to cells by using functionalized carbon nanotubes. Angew Chem Int Ed Engl. 2005;44(39):6358-62.

  118. Pruthi J, Mehra NK, Jain NK. Macrophages targeting of amphotericin B through mannosylated multiwalled carbon nanotubes. J Drug Target. 2012;20(7):593-604.

  119. Prajapati VK, Awasthi K, Gautam S, Yadav TP, Rai M, Srivastava ON, Sundar S. Targeted killing of Leishmania donovani in vivo and in vitro with amphotericin B attached to functionalized carbon nanotubes. J Antimicrob Chemother. 2011;66(4):874-79.

  120. Pfeiffer C, Wozel G. Dapsone and sulfones in dermatology: Overview and update. J Am Acad Dermatol. 2001;45(3):420-34.

  121. Vukovic GD, Tomic SZ, Marinkovic AD, Radmilovic V, Uskokovic PS, Colic M. The response of peritoneal macrophages to dapsone covalently attached on the surface of carbon nanotubes. Carbon. 2010 Sep;48(11):3066-78.

  122. Azizian J, Hekmati M, Dadras OG. Functionalization of carboxylated multiwall nanotubes with dapsone derivatives and study of their antibacterial activities against E. coli and S. aureus. Orient J Chem. 2014;30(2):667-73.

  123. Jiang L, Liu T, He H, Pham-Huy LA, Li L, Pham-Huy C, Xiao D. Adsorption behavior of pazufloxacin mesilate on amino-functionalized carbon nanotubes. J Nanosci Nanotechnol. 2012;12(9):7271-9.

  124. Li H, He J, Zhao Y, Wang G, Wei Q. The effect of carbon nanotubes added into bullfrog collagen hydrogel on gentamicin sulphate release: In vitro. J Inorg Organomet Polym Mater. 2011;21(4):890-2.

  125. Sanz V, Tilmaciu C, Soula B, Flahaut E, Coley HM, Silva SRP, McFadden J. Chloroquine-enhanced gene delivery mediated by carbon nanotubes. Carbon. 2011;49(15):5348-58.

  126. Naficy S, Razal JM, Spinks GM, Wallace GG. Modulated release of dexamethasone from chitosan-carbon nanotube films. Sens Actuators A. 2009;155(1):120-4.

  127. Luo X, Matranga C, Tan S, Alba N, Cui XT. Carbon nanotube nanoreservior for controlled release of anti-inflammatory dexamethasone. Biomaterials. 2011;32(26):6316-23.

  128. Spizzirri UG, Hampel S, Cirillo G, Nicoletta FP, Hassan A, Vittorio O, Picci N, Iemma F. Spherical gelatin/CNTs hybrid microgels as electro-responsive drug delivery systems. Int J Pharm. 2013;448(1):115-22.

  129. Giri A, Bhowmick M, Pal S, Bandyopadhyay A. Polymer hydrogel from carboxymethyl guar gum and carbon nanotube for sustained transdermal release of diclofenac sodium. Int J Biol Macromol. 2011;49(5):885-93.

  130. Im JS, Bai BC, Lee YS. The effect of carbon nanotubes on drug delivery in an electro-sensitive trans-dermal drug delivery system. Biomaterials. 2010;31(6):1414-9.

  131. Madaeni SS, Derakhshandeh K, Ahmadi S, Vatanpour V, Zinadini S. Effect of modified multi-walled carbon nanotubes on release characteristics of indomethacin from symmetric membrane coated tablets. J Membr Sci. 2012;389:110-6.

  132. Garala K, Patel J, Patel A, Dharamsi A. Enhanced encapsulation of metoprolol tartrate with carbon nanotubes as adsorbent. Appl Nanosci. 2011;1(4):219-30.

  133. Bhunia T, Giri A, Nasim T, Chattopadhyay D, Bandyopadhyay A. A transdermal diltiazem hydro-chloride delivery device using multi-walled carbon nanotube/poly(vinyl alcohol) composites. Carbon. 2013;52:305-15.

  134. Shah M, Agrawal Y. Carbon nanotube: A novel carrier for sustained release formulation. Fullerenes Nanotubes Carbon Nanostruct. 2012;20(8):696-708.

  135. Li Y, Wang T, Wang J, Jiang T, Cheng G, Wang S. Functional and unmodified MWNTs for delivery of the water-insoluble drug Carvedilol-a drug-loading mechanism. Appl Surf Sci. 2011;257(13):5663-70.

  136. Kumar S, Ahlawat W, Kumar R, Dilbaghi N. Graphene, carbon nanotubes, zinc oxide and gold as elite nanomaterials for fabrication of biosensors for healthcare. Biosens Bioelectron. 2015;70:498-503.

  137. Mehrotra P. Biosensors and their applications-a review. J Oral Biol Craniofac Res. 2016 May-Aug;6(2):153-9.

  138. Numnuam A, Thavarungkul P, Kanatharana P. An amperometric uric acid biosensor based on chitosan-carbon nanotubes electrospun nanofiber on silver nanoparticles. Anal Bioanal Chem. 2014;406(15):3763-72.

  139. Wang Z, Dai Z. Carbon nanomaterial-based electrochemical biosensors: An overview. Nanoscale. 2015;7(15):6420-31.

  140. Lin Y, Lu F, Tu Y, Ren Z. Glucose biosensors based on carbon nanotube nanoelectrode ensembles. Nano Lett. 2004;4(2):191-5.

  141. Papa H, Gaillard M, Gonzalez L, Chatterjee J. Fabrication of functionalized carbon nanotube bucky-paper electrodes for application in glucose biosensors. Biosensors. 2014;4(4):449-60.

  142. Patolsky F, Weizmann Y, Willner I. Long-range electrical contacting of redox enzymes by SWCNT connectors. Angew Chem Int Ed Engl. 2004;43(16):2113-7.

  143. Pourasl AH, Ahmadi MT, Rahmani M, Chin HC, Lim CS, Ismail R, Tan MLP. Analytical modeling of glucose biosensors based on carbon nanotubes. Nanoscale Res Lett. 2014;9:33.

  144. Santos RM, Rodrigues MS, Laranjinha J, Barbosa RM. Biomimetic sensor based on hemin/carbon nanotubes/chitosan modified microelectrode for nitric oxide measurement in the brain. Biosens Bioelectron. 2013;44(1):152-9.

  145. Prasad BB, Prasad A, Tiwari MP, Madhuri R. Multiwalled carbon nanotubes bearing "terminal monomelic unit" for the fabrication of epinephrine imprinted polymer-based electrochemical sensor. Biosens Bioelectron. 2013;45(1):114-22.

  146. Kress GJ, Shu H-J, Yu A, Taylor A, Benz A, Harmon S, Mennerick S. Fast phasic release properties of dopamine studied with a channel biosensor. J Neurosci. 2014;34(35):11792-802.

  147. Karami A, Behnammorshedi M, Pouri S, Ajdary M. Single-walled carbon nanotube and hemoglobin used in a dopamine biosensor. Int J Electrochem. 2014;9:8367-79.

  148. Fayazfar H, Afshar A, Dolati M, Dolati A. DNA impedance biosensor for detection of cancer, TP53 gene mutation, based on gold nanoparticles/aligned carbon nanotubes modified electrode. Anal Chim Acta. 2014;836:34-44.

  149. Zhang Y, Gao G, Liu H, Fu H, Fan J, Wang K, Chen Y, Li B, Zhang C, Zhi X, He L, Cui D. Identification of volatile biomarkers of gastric cancer cells and ultrasensitive electrochemical detection based on sensing interface ofAu-Ag alloy coated MWCNTs. Theranostics. 2014;4(2):154-62.

  150. Shobha BN, Muniraj NJR. Design, modeling and performance analysis of carbon nanotube with DNA strands as biosensor for prostate cancer. Microsyst Technol. 2015;21(4):791-800.

  151. Chen RJ, Choi HC, Bangsaruntip S, Yenilmez E, Tang X, Wang Q, Chang Y-L, Dai H. An investigation of the mechanisms of electronic sensing of protein adsorption on carbon nanotube devices. J Am Chem Soc. 2004;126(5):1563-8.

  152. Bradley K, Briman M, Star A, Gruner G. Charge transfer from adsorbed proteins. Nano Lett. 2004;4(2):253-6.

  153. Maehashi K, Katsura T, Kerman K, Takamura Y, Matsumoto K, Tamiya E. Label-free protein biosensor based on aptamer-modified carbon nanotube field-effect transistors. Anal Chem. 2007;79(2):782-7.

  154. Arkan E, Saber R, Karimi Z, Shamsipur M. A novel antibody-antigen based impedimetric immuno-sensor for low level detection of HER2 in serum samples of breast cancer patients via modification of a gold nanoparticles decorated multiwall carbon nanotube-ionic liquid electrode. Anal Chim Acta. 2015;874:66-74.

  155. Veetil JV, Ye K. Development of immunosensors using carbon nanotubes. Biotechnol Prog. 2007;23:517-31.

  156. Kierny MR, Cunningham TD, Kay BK. Detection of biomarkers using recombinant antibodies coupled to nanostructured platforms. Nano Rev. 2012;3(1):17240.

  157. Rusling JF, Sotzing G, Papadimitrakopoulosa F. Designing nanomaterial-enhanced electrochemical immunosensors for cancer biomarker proteins. Bioelectrochemistry. 2009;76(1-2):189-94.

  158. Malhotra R, Patel V, Vaque JP, Gutkind JS, Rusling JF. Ultrasensitive electrochemical immunosensor for oral cancer biomarker IL-6 using carbon nanotube forest electrodes and multilabel amplification. Anal Chem. 2010;82(8):3118-23.

  159. Wan Y, Deng W, Su Y, Zhu X, Peng C, Hu H, Peng H, Song S, Fan C. Carbon nanotube-based ultra-sensitive multiplexing electrochemical immunosensor for cancer biomarkers. Biosens Bioelectron. 2011;30(1):93-9.

  160. Jain A, Homayoun A, Bannister CW, Yum K. Single-walled carbon nanotubes as near-infrared optical biosensors for life sciences and biomedicine. Biotechnol J. 2015;10(3):447-59.

  161. Yamada K, Kim C-T, Kim J-H, Chung J-H, Lee HG, Jun S. Single walled carbon nanotube-based junction biosensor for detection of Escherichia coli. PLoS One. 2014;9(9):e105767.

  162. Kolosovas-Machuca ES, Vera-Reveles G, Rodriguez-Aranda MC, Ortiz-Dosal LC, Segura-Cardenas E, Gonzalez FJ. Resistance-based biosensor of multi-walled carbon nanotubes. J Immunoassay Immunochem. 2015;36(2):142-8.

  163. Jin L, Zeng X, Liu M, Deng Y, He N. Current progress in gene delivery technology based on chemical methods and nano-carriers. Theranostics. 2014;4:240-55.

  164. Li H, Hao Y, Wang N, Wang L, Jia S, Wang Y, Yang L, Zhnag Y, Zhnag Z. DOTAP functionalizing single-walled carbon nanotubes as non-viral vectors for efficient intracellular siRNA delivery. Drug Deliv. 2016;23(3):840-8.

  165. Li L, Wen Y, Xu Q, Xu L, Liu D, Liu G, Huang Q. Application of carbon nanomaterials in gene delivery for endogenous RNA interference in vitro and in vivo. Curr Pharm Des. 2015;21(22):3191-8.

  166. Siu KS, Zheng X, Liu Y, Zhang Y, Zhang X, Chen D, Yuan K, Gillies ER, Koropatnick J, Min W-P. Single-walled carbon nanotubes noncovalently functionalized with lipid modified polyethylenimine for sirna delivery in vitro and in vivo. Bioconjug Chem. 2014;25(10):1744-51.

  167. Anderson T, Hu R, Yang C, Yoon HS, Yong KT. Pancreatic cancer gene therapy using an siRNA-functionalized single walled carbon nanotubes (SWNTs) nanoplex. Biomater Sci. 2014;2(9):1244-53.

  168. Inoue Y, Fujimoto H, Ogino T, Iwata H. Site-specific gene transfer with high efficiency onto a carbon nanotube-loaded electrode. J R Soc Interface. 2008;5(25):909-18.

  169. Bartholomeusz G, Cherukuri P, Kingston J, Cognet L, Lemos R, Leeuw TK, Gumbiner-Russo L, Weisman RB, Powis G. In vivo therapeutic silencing of hypoxia-inducible factor 1 alpha (HIF-1a) using single-walled carbon nanotubes noncovalently coated with siRNA. Nano Res. 2009; 2(4):279-91.

  170. Wang X, Ren J, Qu X. Targeted RNA interference of cyclin A2 mediated by functionalized single-walled carbon nanotubes induces proliferation arrest and apoptosis in chronic myelogenous leukemia K562 cells. ChemMedChem. 2008;3(6):940-5.

  171. Mangla B, Patel KS, Kumar P, Kohli K. Anticancer drug-loaded folate-conjugated multiwalled carbon nanotubes. In: Gupta B, Ghosh AK, Suzuki A, Rattan S, editors. Advances in polymer sciences and technology. Singapore: Springer; 2018. p. 197-210.

  172. Al-Jamal KT, Gherardini L, Bardi G, Nunes A, Guo C, Bussy C, Herrero MA, Bianco A, Prato M, Kostarelos K, Pizzorusso T. Functional motor recovery from brain ischemic insult by carbon nano-tube-mediated siRNA silencing. Proc Natl Acad Sci U S A. 2011;108(27):10952-7.

  173. Ladeira MS, Andrade VA, Gomes ERM, Aguiar CJ, Moraes ER, Soares JS, Silva EE, Lacerda RG, Ladeira LO, Jorio A, Lima P, Leite MF, Resende RR, Guatimosim S. Highly efficient siRNA delivery system into human and murine cells using single-wall carbon nanotubes. Nanotechnology. 2010;21(38):385101.

  174. Liu Z, Winters M, Holodniy M, Dai H. siRNA delivery into human T cells and primary cells with carbon-nanotube transporters. Angew Chem Int Ed Engl. 2007;46(12):2023-7.

  175. Geyik C, Evran S, Timur S, Telefoncu A. The covalent bioconjugate of multiwalled carbon nano-tube and amino-modified linearized plasmid DNA for gene delivery. Biotechnol Prog. 2014; 30(1):224-32.

  176. Paul A, Shao W, Shum-Tim D, Prakash S. The attenuation of restenosis following arterial gene transfer using carbon nanotube coated stent incorporating TAT/DNAAng1+Vegf nanoparticles. Biomaterials. 2012;33(30):7655-64.

  177. Gao L, Nie L, Wang T, Qin Y, Guo Z, Yang D, Yan X. Carbon nanotube delivery of the GFP gene into mammalian cells. Chembiochem. 2006;7(2):239-42.

  178. Qin W, Yang K, Tang H, Tan L, Xie Q, Ma M, Zhang Y, Yao S. Improved GFP gene transfection mediated by polyamidoamine dendrimer-functionalized multi-walled carbon nanotubes with high biocom-patibility. Colloids Surf B. 2011;84(1):206-13.

  179. Karmakar A, Bratton SM, Dervishi E, Ghosh A, Mahmood M, Xu Y, Saeed LM, Mustafa T, Casciano D, Radominska-Pandya A, Bins AS. Ethylenediamine functionalized-single-walled nanotube (f-SWNT)-assisted in vitro delivery of the oncogene suppressor p53 gene to breast cancer MCF-7 cells. Int J Nanomed. 2011;6:1045-55.

  180. Kusenda B, Mraz M, Mayer J, Pospisilova S. MicroRNA biogenesis, functionality and cancer relevance. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2006;150:205-15.

  181. Chen K, Rajewsky N. The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet. 2007;8(2)93-103.

  182. Broderick JA, Zamore PD. MicroRNA therapeutics. Gene Ther. 2011;18:1104-10.

  183. Harrison BS, Atala A. Carbon nanotube applications for tissue engineering. Biomaterials. 2007; 28(2):344-53.

  184. Dvir T, Timko BP, Kohane DS, Langer R. Nanotechnological strategies for engineering complex tissues. Nat Nanotechnol. 2011;6(1):13-22.

  185. Hopley EL, Salmasi S, Kalaskar DM, Seifalian AM. Carbon nanotubes leading the way forward in new generation 3D tissue engineering. Biotechnol Adv. 2014;32(5):1000-14.

  186. van Rijt S, Habibovic P. Enhancing regenerative approaches with nanoparticles. J R Soc Interface. 2017;14(129):20170093.

  187. Pan L, Pei X, He R, Wan Q, Wang J. Multiwall carbon nanotubes/polycaprolactone composites for bone tissue engineering application. Colloids Surf B. 2012;93:226-34.

  188. Venkatesan J, Qian ZJ, Ryu B, Ashok Kumar N, Kim SK. Preparation and characterization of carbon nanotube-grafted-chitosan-natural hydroxyapatite composite for bone tissue engineering. Carbohydr Polym. 2011;83(2):569-77.

  189. Lin C, Wang Y, Lai Y, Yang W, Jiao F, Zhang H, Ye S, Zhang Q. Incorporation of carboxylation multiwalled carbon nanotubes into biodegradable poly(lactic-co-glycolic acid) for bone tissue engineering. Colloids Surf B. 2011;83(2):367-75.

  190. Venkatesan J, Ryu BM, Sudha PN, Kim SK. Preparation and characterization of chitosan-carbon nanotube scaffolds for bone tissue engineering. Int J Biol Macromol. 2012;50(2):393-402.

  191. Hirata E, Uo M, Takita H, Akasaka T, Watari F, Yokoyama A. Multiwalled carbon nanotube-coating of 3D collagen scaffolds for bone tissue engineering. Carbon. 2011;49(10):3284-91.

  192. Cunha C, Panseri S, Iannazzo D, Piperno A, Pistone A, Fazio M, Russo A, Marcacci M, Galvagno S. Hybrid composites made of multiwalled carbon nanotubes functionalized with Fe3O4 nanoparticles for tissue engineering applications. Nanotechnology. 2012;23(46):465102.

  193. Zhang Q, Mochalin VN, Neitzel I, Knoke IY, Han J, Klug CA, Zhou JG, Lelkes PI, Gogotsi Y. Fluorescent PLLA-nanodiamond composites for bone tissue engineering. Biomaterials. 2011; 32(1):87-94.

  194. Chen L, Hu J, Shen X, Tong H. Synthesis and characterization of chitosan-multi walled carbon nanotubes/hydroxyapatite nanocomposites for bone tissue engineering. J Mater Sci Mater Med. 2013;24(8):1843-51.

  195. Cheng Q, Rutledge K, Jabbarzadeh E. Carbon nanotube-poly(lactide-co-glycolide) composite scaffolds for bone tissue engineering applications. Ann Biomed Eng. 2013;41(5):904-16.

  196. Shokrgozar MA, Mottaghitalab F, Mottaghitalab V, Farokhi M. Fabrication of porous chitosan/poly(vinyl alcohol) reinforced single-walled carbon nanotube nanocomposites for neural tissue engi-neering. J Biomed Nanotechnol. 2011;7(2):276-84.

  197. Lewitus DY, Landers J, Branch JR, Smith KL, Callegari G, Kohn J, Neimark AV. Biohybrid carbon nanotube/agarose fibers for neural tissue engineering. Adv Funct Mater. 2011;21(14):2624-32.

  198. Gu X, Ding F, Williams DF. Neural tissue engineering options for peripheral nerve regeneration. Biomaterials. 2014;35(24):6143-56.

  199. Chen CS, Soni S, Le C, Biasca M, Farr E, Chen EY-T, Chin W-C. Human stem cell neuronal differen-tiation on silk-carbon nanotube composite. Nanoscale Res Lett. 2012;7(1):126.

  200. Huang YJ, Wu HC, Tai NH, Wang TW. Carbon nanotube rope with electrical stimulation promotes the differentiation and maturity of neural stem cells. Small. 2012;8(18):2869-77.

  201. Chen YS, Tsou PC, Lo JM, Tsai HC, Wang YZ, Hsiue GH. Poly(N-isopropylacrylamide) hydro-gels with interpenetrating multiwalled carbon nanotubes for cell sheet engineering. Biomaterials. 2013;34(30):7328-34.

  202. McKeon-Fischer KD, Flagg DH, Freeman JW. Coaxial electrospun poly(s-caprolactone), multiwalled carbon nanotubes, and polyacrylic acid/polyvinyl alcohol scaffold for skeletal muscle tissue engineering. J Biomed Mater Res A. 2011;99A(3):493-9.

  203. Shin SR, Jung SM, Zalabany M, Kim K, Zorlutuna P, Kim SB, Nikkhah M, Khabiry M, Azize M, Kong J, Wan K-T, Palacios T, Dokmeci MR, Bae H, Tang XS, Khademhosseini A. Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators. ACS Nano. 2013;7(3):2369-80.

  204. Martinelli V, Cellot G, Toma FM, Long CS, Caldwell JH, Zentilin L, Giacca M, Turco A, Prato M, Ballerini L, Mestroni L. Carbon nanotubes promote growth and spontaneous electrical activity in cultured cardiac myocytes. Nano Lett. 2012;12(4):1831-8.

  205. Luo Y, Wang S, Shen M, Qi R, Fang Y, Guo R, Cai H, Cao X, Tomas H, Zhu M, Shi X. Carbon nanotube-incorporated multilayered cellulose acetate nanofibers for tissue engineering applications. Carbohydr Polym. 2013;91(1):419-27.

  206. Canas JE, Long M, Nations S, Vadan R, Dai L, Luo M, Ambikapathi R, Lee EH, Olszyk D. Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of select crop species. Environ Toxicol Chem. 2008;27(9):1922-31.

  207. Larue C, Pinault M, Czarny B, Georgin D, Jaillard D, Bendiab N, Mayne-L'Hermite M, Taran F, Dive V, Carriere M. Quantitative evaluation of multi-walled carbon nanotube uptake in wheat and rapeseed. J Hazard Mater. 2012;227-228:155-63.

  208. Yan S, Zhao L, Li H, Zhang Q, Tan J, Huang M, He S, Li L. Single-walled carbon nanotubes selectively influence maize root tissue development accompanied by the change in the related gene expression. J Hazard Mater. 2013;246-247:110-8.

  209. Lin D, Xing B. Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environ Pollut. 2007;150(2):243-50.

  210. Miralles P, Johnson E, Church TL, Harris AT. Multiwalled carbon nanotubes in alfalfa and wheat: Toxicology and uptake. J R Soc Interface. 2012;9(77):3514-27.

  211. Stampoulis D, Sinha SK, White JC. Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol. 2009;43(24):9473-9.

  212. Ghodake G, Seo YD, Park D, Lee DS. Phytotoxicity of carbon nanotubes assessed by brassica juncea and phaseolus mungo. J Nanoelectron Optoelectron. 2010;5(2):157-60.

  213. Wang X, Han H, Liu X, Gu X, Chen K, Lu D. Multi-walled carbon nanotubes can enhance root elongation of wheat (Triticum aestivum) plants. J Nanopart Res. 2012;14(6):1-10.

  214. Rao DP, Srivastava A. Enhancement of seed germination and plant growth of wheat, maize, peanut and garlic using multiwalled carbon nanotubes. Eur Chem Bull. 2014;3(5):502-4.

  215. Lahiani MH, Dervishi E, Chen J, Nima Z, Gaume A, Biris AS, Khodakovskaya MV. Impact of carbon nanotube exposure to seeds of valuable crops. ACS Appl Mater Interfaces. 2013;5(16):7965-73.

  216. Zhai G, Gutowski SM, Walters KS, Yan B, Schnoor JL. Charge, size, and cellular selectivity for multiwall carbon nanotubes by maize and soybean. Environ Sci Technol. 2015;49(12):7380-90.

  217. Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z, Watanabe F, Biris AS. Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano. 2009;3(10):3221-7.

  218. Khodakovskaya MV, De Silva K, Nedosekin DA, Dervishi E, Biris AS, Shashkov EV, Galanzha EI, Zhraov VP. Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions. Proc Natl Acad Sci U S A. 2011;108(3):1028-33.

  219. Khodakovskaya MV, Kim BS, Kim JN, Alimohammadi M, Dervishi E, Mustafa T, Cernigla CE. Carbon nanotubes as plant growth regulators: Effects on tomato growth, reproductive system, and soil microbial community. Small. 2013;9(1):115-23.

  220. Jiang Y, Hua Z, Zhao Y, Liu Q, Wang F, Zhang Q. The effect of carbon nanotubes on rice seed germination and root growth. In: Lecture notes in electrical engineering. Berlin (Germany): Springer Verlag; 2014. p. 1207-12.

  221. Nair R, Mohamed MS, Gao W, Maekawa T, Yoshida Y, Ajayan PM, Kumar DS. Effect of carbon nano-materials on the germination and growth of rice plants. J Nanosci Nanotechnol. 2012;12(3):2212-20.

  222. Haghighi M, Teixeira Da Silva JA. The effect of carbon nanotubes on the seed germination and seedling growth of four vegetable species. J Crop Sci Biotechnol. 2014;17(4):201-8.

  223. Shen CX, Zhang QF, Li J, Bi FC, Yao N. Induction of programmed cell death in Arabidopsis and rice by single-wall carbon nanotubes. Am J Bot. 2010;97(10):1602-9.

  224. Tiwari DK, Dasgupta-Schubert N, Villasenor Cendejas LM, Villegas J, Carreto Montoya L, Borjas Garcia SE. Interfacing carbon nanotubes (CNT) with plants: Enhancement of growth, water and ionic nutrient uptake in maize (Zea mays) and implications for nanoagriculture. Appl Nanosci. 2014;4(5):577-91.

  225. Begum P, Fugetsu B. Phytotoxicity of multi-walled carbon nanotubes on red spinach (Amaranthus tricolor L) and the role of ascorbic acid as an antioxidant. J Hazard Mater. 2012;243:212-22.

  226. Ghosh M, Bhadra S, Adegoke A, Bandyopadhyay M, Mukherjee A. MWCNT uptake in Allium cepa root cells induces cytotoxic and genotoxic responses and results in DNA hyper-methylation. Mutat Res. 2015;774:49-58.

  227. Ghosh M, Chakraborty A, Bandyopadhyay M, Mukherjee A. Multi-walled carbon nanotubes (MWCNT): Induction ofDNAdamage in plant and mammalian cells. J Hazard Mater. 2011;197:327-36.

  228. Son KH, Hong JH, Lee JW. Carbon nanotubes as cancer therapeutic carriers and mediators. Int J Nanomed. 2016;11:5163-85.

  229. Tripathi S, Sonkar SK, Sarkar S. Growth stimulation of gram (Cicer arietinum) plant by water soluble carbon nanotubes. Nanoscale. 2011;3(3):1176-81.

  230. Sonkar SK, Roy M, Babar DG, Sarkar S. Water soluble carbon nano-onions from wood wool as growth promoters for gram plants. Nanoscale. 2012;4(24):7670-5.

  231. Voleti R, Wait DA. Effect of carbon nanotubes on plant growth and gas exchange using Arabidopsis thaliana. In: Technical Proceedings of the 2014 clean technology conference and trade show. TechConnect Briefs. 2014;274-6.

  232. Lin S, Reppert J, Hu Q, Hudson JS, Reid ML, Ratnikova TA, Rao AM, Luo H, Ke PC. Uptake, trans-location, and transmission of carbon nanomaterials in rice plants. Small. 2009;5(10):1128-32.

  233. Liu Q, Chen B, Wang Q, Shi X, Xiao Z, Lin J, Fang X. Carbon nanotubes as molecular transporters for walled plant cells. Nano Lett. 2009;9(3):1007-10.

  234. Wild E, Jones KC. Novel method for the direct visualization of in vivo nanomaterials and chemical interactions in plants. Environ Sci Technol. 2009;43(14):5290-4.

  235. Mondal A, Basu R, Das S, Nandy P. Beneficial role of carbon nanotubes on mustard plant growth: An agricultural prospect. J Nanopart Res. 2011;13(10):4519-28.

  236. Pourkhaloee A, Haghighi M, Saharkhiz MJ, Jouzi H, Doroodmand MM. Carbon nanotubes can promote seed germination via seed coat penetration. Seed Technol. 2011;33:155-169.

  237. Mangla B, Kohli K, Rabiu S. Review of medicinal uses, phytochemistry, pharmacological properties, extraction methods and toxicology of Lannea microcarpa (African Grapes). Curr Tradit Med. 2020. doi: 10.2174/2215083805666190626095609.

  238. Lahiani MH, Chen J, Irin F, Puretzky AA, Green MJ, Khodakovskaya MV. Interaction of carbon nano-horns with plants: Uptake and biological effects. Carbon. 2015;81(1):607-19.

  239. Lara-Romero J, Campos-Garcia J, Dasgupta-Schubert N, Borjas-Garcia S, Tiwari DK, Paraguay-Delgado F, Jimenez-Sandoval S, Alonso-Nunez G, Gomez-Romero M, Lindig-Cisneros R, Reyes De la Cruz H, Villegas JA. Biological effects of carbon nanotubes generated in forest wildfire ecosystems rich in resinous trees on native plants. PeerJ. 2017;5:e3658.

  240. Hamdi H, De La Torre-Roche R, Hawthorne J, White JC. Impact of non-functionalized and amino-functionalized multiwall carbon nanotubes on pesticide uptake by lettuce (Lactuca sativa L.). Nanotoxicology. 2015;9(2):172-80.

  241. Yuan Z, Zhang Z, Wang X, Li L, Cai K, Han H. Novel impacts of functionalized multi-walled carbon nanotubes in plants: Promotion of nodulation and nitrogenase activity in the rhizobium-legume system. Nanoscale. 2017;9(28):9921-37.

  242. Lin C, Fugetsu B, Su Y, Watari F. Studies on toxicity of multi-walled carbon nanotubes on Arabidopsis T87 suspension cells. J Hazard Mater. 2009;170(2-3):578-83.

  243. Begum P, Ikhtiari R, Fugetsu B, Matsuoka M, Akasaka T, Watari F. Phytotoxicity of multi-walled carbon nanotubes assessed by selected plant species in the seedling stage. Appl Surf Sci. 2012; 262:120-4.

  244. Jang HJ, Nde C, Toghrol F, Bentley WE. Microarray analysis of Mycobacterium bovis BCG revealed induction of iron acquisition related genes in response to hydrogen peroxide. Environ Sci Technol. 2009;43(24):9465-72.

  245. Tan XM, Lin C, Fugetsu B. Studies on toxicity of multi-walled carbon nanotubes on suspension rice cells. Carbon. 2009;47(15):3479-87.

  246. Tan XM, Fugetsu B. Multi-walled carbon nanotubes interact with cultured rice cells: Evidence of a self-defense response. J Biomed Nanotechnol. 2007;3(3):285-8.

  247. Simona AD, Florina A, Rodica CA, Evelyne O, Maria-Corina S. Nanoscale delivery systems: Actual and potential applications in the natural products industry. Curr Pharm Des. 2017;23(17):2414-2421.

  248. Nahar M, Dutta T, Murugesan S, Asthana A, Mishra D, Rajkumar V, Tare M, Saraf S, Jain NK. Functional polymeric nanoparticles: An efficient and promising tool for active delivery of bioactives. Crit Rev Ther Drug Carrier Syst. 2006;23(4):259-318.

  249. Daneshmehr S. Carbon nanotubes for delivery of quercetin as anticancer drug: Theoretical study. Procedia Mater Sci. 2015;11:131-6.

  250. Wang C, Li W. Preparation, characterization and in vitro and in-vivo anti-tumor activity of Oridonin-conjugated multi-walled carbon nanotubes functionalized with carboxylic acids. J Nanomater. 2016;2016:3439419.

  251. Shaffer M, Gallastegui AG, Asiri A, Althabaiti S, inventor; Bio Nano Consulting King Abdulaziz University, assignee. Cross-linked carbon nanotube networks. United States patent US20140012034A1. 2014 Jan 9.

  252. Kinloch I, Singh C, Shaffer MSP, Koziol KKK, Windle A, inventor; Cambridge University Technical Services Ltd CUTS, assignee. Method for producing carbon nanotubes and/or nanofibers. United States patent US20060133982A1. 2006 June 22.

  253. Xing C, Wang J, Wei Z, Ma J, Tsai CJ, Li Q, inventor; C-Nano Technology Ltd., assignee. Carbon nanotube-based pastes. United States patent US8540902B2. 2013 Sep 21.

  254. Badawi NAAH, Esawi AMK, inventor; American University in Cairo Ramadan, A.R., assignee. Polymer-carbon nanotube nanocomposite porous membranes. United States patent US20140209539A1. 2015 Jul 31.

  255. Chang SC, Sung PC, inventor; National Tsing Hua University (NTHU), assignee. Method of producing carbon nanotube sponges. United States patent US20130087941A1. 2013 Apr 11.

  256. Bordere S, Gaillard P, Baddour C, inventor; Arkema France SA, assignee. Method for synthesis of carbon nanotubes. United States patent US20090134363A1. 2009 May 28.

  257. Khabashesku VN, Peng H, Margrave JL, Margrave ML, inventor; William Marsh Rice University, assignee. Nanotube-amino acids and methods for preparing same. United States patent US20100047575A1. 2010 Feb 25.

  258. Atyabi F, Ateli M, Sobhani Z, Dinarvand R, Ghahremani, MH, inventor. Poly (citric acid) functionalized carbon nanotube drug delivery system. United States patent US8460711B2. 2013 Jun 11.

  259. Jeong Y, Lee HJ, Lee DY, inventor; Brainguard Co Ltd., assignee. Use of carbon nanotubes for preventing or treating brain disease. European patent EP2594289A2. 2013 May 22.

  260. Kirkpatrick-Lynn D, inventor; University of South Florida, assignee. Single walled carbon nanotube polynucleotide complexes and methods related thereto. United States patent US20080214494A1. 2018 Aug 8.

  261. Mohapatra SS, Kumar A, inventor; University of South Florida, assignee. Method of drug delivery by carbon nanotube-chitosan nanocomplexes. United States patent US8536324B2. 2008 Sep 4.

  262. Mattson MP, Haddon RC, Rao AM, inventor; University of Kentucky Research Foundation, Lexington, KY (US), assignee. Molecular functionalization of carbon nanotubes and use as substrates for neuronal growth. United States patent US6670179 B1. 2003 Dec 30.

  263. Tour JM, Lucente-Schultz R, Leonard A, Moore VC, Casscella SW, Myers JN, Milas ZL, Mason KA, Milas L, Price BK, Hudson JL, Jodie L, Conyers JR, Lucente-Schultz RL, Leonard A, Kosynkin DV, inventor; William Marsh Rice University University of Texas System, assignee. Water-soluble carbon nanotube composition for drug delivery and medicinal applications. United States patent US8784866B2. 2014 Jul 22.

  264. Chen WR, inventor; University of Central Oklahoma, assignee. Immunologically modified carbon nanotubes for cancer treatment. United States patent US9107944B2. 2015 Aug 18.

  265. Jagota A, Lustig AR, Wang S, Wang H, inventor; EI Du Pont de Nemours and Co., assignee. Carbon nanotube binding peptides. United States patent US7829504B2. 2010 Nov 9.

  266. Hirsch A, Sagman U, Wilson SR, Rosenblum MG, inventor; Luna Innovations Inc Ensysce Biosciences Inc., assignee. Use of carbon nanotube for drug delivery. United States patent US20080193490A1. 2008 Aug 14.

  267. Harrison RG, Resasco DE, inventor; University of Oklahoma, assignee. Compositions and methods for cancer treatment using targeted carbon nanotubes. United State patent US20140155333A1. 2016 Nov 29.

  268. Dai H, Kam NWS, Wender PA, Liu Z, inventor; Leland Stanford Junior University, assignee. Hydrophobic nanotubes and nanoparticles as transporters for the delivery of drugs into cells. United States patent US20130034610A1. 2013 Feb 7.

  269. Chen J, Wong SS, Ojima I, inventor; Research Foundation of State University ofNew York Brookhaven Science Associates LLC, assignee. Carbon nanotube-based drug delivery systems and methods of making same. United States patent US20100021471A1. 2010 Jan 28.

  270. Jennings JA, Haggard WO, Bumgardner JD, inventor. Chitosan/carbon nanotube composite scaffolds for drug delivery. United States patent US20100266694A1. 2010 Oct 21.

  271. Kim SS, Noh YH, Yoon OJ, Yoo SH, inventor. Carbon nanotubes serving as stem cell scaffold. United States patent US20090148417A1. 2009 Jun 11.

  272. Lewis G, inventor; N/C Quest Inc., assignee. Carbon nanotube production method to stimulate soil microorganisms and plant growth produced from the emissions of internal combustion. United States patent US9717186B2. 2017 Aug 1.

  273. Yu J, Ren Q, inventor; Method of improving germination rates of isatis root seeds using multi-wall carboxylating carbon nanotubes. China patent CN103155846A. 2013 Jun 19.

  274. Yu J, Ren Q, inventor; Method for enhancing germination rate of safflower seed by utilizing multi-wall carboxylic carbon nanotube. China patent CN103155745A. 2013 Jun 9.

  275. Chen J, Xu Z, inventor; Culture medium for promoting adventive root of woody plant to root and grow and application of culture medium. China patent CN103125395B. 2014 Apr 2.

  276. Khodakovskaya MV, Biris AS, inventor; University of Arkansas, assignee. Method of using carbon nanotubes to affect seed germination and plant growth. Unites State patent US9364004B2. 2016 Jun 14.

  277. Goodell BS, Xie X, Qian Y, Zhang D, Peterson ML, Jellison JL, inventor; University of Maine System, assignee. Processes for producing carbon nanotubes and carbon nanotubes produced thereby. United States patent US8080227B1. 2011 Dec 20.

  278. Musso S, Zanetti M, Tagliaferro A, Luda MP, inventor; Process for recycling organic materials with the production of carbon nanotubes. World Intellectual Property Organization patent WO2009081362A1. 2009 Jul 2.

  279. Prajapati SK, Malaiya A, Kesharwani P, Soni D, Jain A. Biomedical applications and toxicities of carbon nanotubes. Drug Chem Toxicol. 2020 Jan 7:1-16.

  280. van Zandwijk N, Frank AL. Potential toxicities of carbon nanotubes: Time for a reminder. Expert Rev Respir Med. 2020;14(4):339-40.

  281. Gulati N, Gupta H. Two faces of carbon nanotube: Toxicities and pharmaceutical applications. Crit Rev Ther Drug Carrier Syst. 2012;29(1):65-88.

  282. Ali-Boucetta H, Nunes A, Sainz R, Herrero MA, Tian B, Prato M, Bianco A, Kostarelos K. Asbestoslike pathogenicity of long carbon nanotubes alleviated by chemical functionalization. Angew Chem Int Ed Engl. 2013;52(8):2274-8.

  283. Zhu J, Kim JD, Peng H, Margrave JL, Khabashesku VN, Barrera EV. Improving the dispersion and integration of single-walled carbon nanotubes in epoxy composites through functionalization. Nano Lett. 2003;3(8):1107-13.

  284. Shin SR, Bae H, Cha JM, Mun JY, Chen YC, Tekin H, Shin H, Farshchi S, Dokmeci MR, Tang S, Khademhosseini A. Carbon nanotube reinforced hybrid microgels as scaffold materials for cell encapsulation. ACS Nano. 2012;6(1):362-72.

  285. Mingwu S, Su HW, Xiangyang S, Xisui C, Qingguo H, Elijah JP, Pinto RA, Baker JR, Weber WJ. Polyethyleneimine-mediated functionalization of multiwalled carbon nanotubes: Synthesis, characterization, and in vitro toxicity assay. J Phys Chem C. 2009;113(8):3150-6.

  286. Zhang B, Chen Q, Tang H, Xie Q, Ma M, Tan L, Zhang Y, Yao S. Characterization of and biomolecule immobilization on the biocompatible multi-walled carbon nanotubes generated by functionalization with polyamidoamine dendrimers. Colloids Surf B. 2010;80(1):18-25.

  287. Alpatova AL, Shan W, Babica P, Upham BL, Rogensues AR, Masten SJ, Drown E, Mohanty AK, Alocilja EC, Tarabara VV. Single-walled carbon nanotubes dispersed in aqueous media via non-covalent functionalization: Effect of dispersant on the stability, cytotoxicity, and epigenetic toxicity of nanotube suspensions. Water Res. 2010;44(2):505-20.

  288. Zhang Y, Xu Y, Li Z, Chen T, Lantz SM, Howard PC, Paule MG, Slikker W, Watanabe F, Mustafa T, Biris AS, Ali SF. Mechanistic toxicity evaluation of uncoated and PEGylated single-walled carbon nanotubes in neuronal PC12 cells. ACS Nano. 2011;5(9):7020-33.

  289. Schipper ML, Nakayama-Ratchford N, Davis CR, Kam NWS, Chu P, Liu Z, Sun X, Dai H, Gambhir SS. A pilot toxicology study of single-walled carbon nanotubes in a small sample of mice. Nat Nanotechnol. 2008;3(4):216-21.

  290. Boncel S, Muller KH, Skepper JN, Walczak KZ, Koziol KKK. Tunable chemistry and morphology of multi-wall carbon nanotubes as a route to non-toxic, theranostic systems. Biomaterials. 2011;32(30):7677-86.

  291. Dong PX, Wan B, Guo LH. In vitro toxicity of acid-functionalized single-walled carbon nanotubes: Effects on murine macrophages and gene expression profiling. Nanotoxicology. 2012;6(3):288-303.

  292. Pichardo S, Gutierrez-Praena D, Puerto M, Sanchez E, Grilo A, Camean AM, Jos A. Oxidative stress responses to carboxylic acid functionalized single wall carbon nanotubes on the human intestinal cell line Caco-2. Toxicol In Vitro. 2012;26(5):672-7.

  293. Lou Y, Pan Z, Wu R, Xue E, Jiang L, Yang G, Zhou Y, Liu J, Huang Q, Xu H. Biocompatibility of alpha-calcium sulfate hemihydrate (CSH)/multi-walled carbon nanotube (MWCNT) composites for bone reconstruction application. Sheng Wu Gong Cheng Xue Bao. 2012;28(3):340-8.

  294. Lodhi N, Mehra NK, Jain NK. Development and characterization of dexamethasone mesylate anchored on multi walled carbon nanotubes. J Drug Target. 2013;21(1):67-76.

  295. Zardini HZ, Amiri A, Shanbedi M, Maghrebi M, Baniadam M. Enhanced antibacterial activity of amino acids-functionalized multi walled carbon nanotubes by a simple method. Colloids Surf B. 2012;92:196-202.

  296. Mutlu GM, Budinger GRS, Green AA, Urich D, Soberanes S, Chiarella SE, Alheid GF, McCrimmon DR, Szleifer I, Hersam MC. Biocompatible nanoscale dispersion of single-walled carbon nanotubes minimizes in vivo pulmonary toxicity. Nano Lett. 2010 May 12;10(5):1664-70.

  297. Kolosnjaj-Tabi J, Hartman KB, Boudjemaa S, Ananta JS, Morgant G, Szwarc H, Wilson LJ, Moussa F. In vivo behavior of large doses of ultrashort and full-length single-walled carbon nanotubes after oral and intraperitoneal administration to Swiss mice. ACS Nano. 2010;4(3):1481-92.

  298. Hu X, Liu R, Zhang D, Zhang J, Li Z, Luan Y. Rational design of an amphiphilic chlorambucil prodrug realizing self-assembled micelles for efficient anticancer therapy. ACS Biomater Sci Eng. 2018;4(3):973-80.

  299. Zhang H, Jiang W, Liu R, Zhang J, Zhang D, Li Z, Luan Y. Rational design of metal organic frame-work nanocarrier-based codelivery system of doxorubicin hydrochloride/verapamil hydrochloride for overcoming multidrug resistance with efficient targeted cancer therapy. ACS Appl Mater Interfaces. 2017;9(23):19687-97.

  300. Jiang W, Zhang H, Wu J, Zhai G, Li Z, Luan Y, Garg S. CuSMOF-based well-designed quercetin delivery system for chemo-photothermal therapy. ACS Appl Mater Interfaces. 2018;10(40):34513-23.

  301. Zhang D, Zhang J, Li Q, Tian H, Zhang N, Li Z, Luan Y. pH- and enzyme-sensitive IR820-paclitaxel conjugate self-assembled nanovehicles for near-infrared fluorescence imaging-guided chemo-photo-thermal therapy. ACS Appl Mater Interfaces. 2018;10(36):30092-102.

  302. Zhang H, Li Q, Liu R, Zhang X, Li Z, Luan Y. A versatile prodrug strategy to in situ encapsulate drugs in MOF nanocarriers: A case of cytarabine-IR820 prodrug encapsulated ZIF-8 toward chemo-photothermal therapy. Adv Funct Mater. 2018 Aug 29;28(35):1802830.

  303. Zhang P, Zhang H, He W, Zhao D, Song A, Luan Y. Disulfide-linked amphiphilic polymer-docetaxel conjugates assembled redox-sensitive micelles for efficient antitumor drug delivery. Biomacromolecules. 2016;17(5):1621-32.

  304. He W, Hu X, Jiang W, Liu R, Zhang D, Zhang J, Li Z, Luan Y. Rational design of a new self-codelivery system from redox-sensitive camptothecin-cytarabine conjugate assembly for effectively synergistic anticancer therapy. Adv Healthc Mater. 2017 Dec 20;6(24).

  305. Mehra NK, Jain AK, Lodhi N, Raj R, Dubey V, Mishra D, Nahar M, Jain NK. Challenges in the use of carbon nanotubes for biomedical applications. Crit Rev Ther Drug Carrier Syst. 2008;25(2):169-206.

  306. Mishra V, Kesharwani P, Jain NK. Biomedical applications and toxicological aspects of functionalized carbon nanotubes. Crit Rev Ther Drug Carrier Syst. 2018;35(4):293-330.

  307. Liu Z, Robinson JT, Tabakman SM, Yang K, Dai H. Carbon materials for drug delivery & cancer therapy. Mater Today. 2011;14(7-8):316-23.

ЦИТИРОВАНО В
  1. Wang Lidan, Geng Jingping, Chen Linlin, Guo Xiangli, Wang Tao, Fang Yanfen, Belingon Bonn, Wu Jiao, Li Manman, Zhan Ying, Shang Wendou, Wan Yingying, Feng Xuemei, Li Xianghui, Wang Hu, Improved transfer efficiency of supercharged 36 + GFP protein mediate nucleic acid delivery, Drug Delivery, 29, 1, 2022. Crossref

  2. Jiang Zhiwei, He Jin, Wang Xueting, Zhu Danji, Li Na, Ren Lingfei, Yang Guoli, Nanomaterial-based cell sheet technology for regenerative medicine and tissue engineering, Colloids and Surfaces B: Biointerfaces, 217, 2022. Crossref

Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции Цены и условия подписки Begell House Контакты Language English 中文 Русский Português German French Spain