Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Critical Reviews™ in Therapeutic Drug Carrier Systems
Импакт фактор: 2.9 5-летний Импакт фактор: 3.72 SJR: 0.736 SNIP: 0.818 CiteScore™: 4.6

ISSN Печать: 0743-4863
ISSN Онлайн: 2162-660X

Выпуски:
Том 37, 2020 Том 36, 2019 Том 35, 2018 Том 34, 2017 Том 33, 2016 Том 32, 2015 Том 31, 2014 Том 30, 2013 Том 29, 2012 Том 28, 2011 Том 27, 2010 Том 26, 2009 Том 25, 2008 Том 24, 2007 Том 23, 2006 Том 22, 2005 Том 21, 2004 Том 20, 2003 Том 19, 2002 Том 18, 2001 Том 17, 2000 Том 16, 1999 Том 15, 1998 Том 14, 1997 Том 13, 1996 Том 12, 1995

Critical Reviews™ in Therapeutic Drug Carrier Systems

DOI: 10.1615/CritRevTherDrugCarrierSyst.2018025013
pages 93-136

In Situ Forming Depot as Sustained-Release Drug Delivery Systems

Navjot Kanwar
University Institute of Pharmaceutical Sciences, UGC Centre for Advanced Studies, Panjab University, Chandigarh, India, 160014
Vivek Ranjan Sinha
University Institute of Pharmaceutical Sciences, UGC Centre for Advanced Studies, Panjab University, Chandigarh, India, 160014

Краткое описание

In situ forming systems can serve as promising alternative to existing long acting injectables like disperse systems and microspheres, owing to their biocompatibility, stability, ease of administration and scale up. Microspheres based on long-acting parenteral systems pose challenges in scaling up and process changes with the drug and polymer selected. In situ gelling systems are having low viscosity which is very conducive during various manufacturing unit operations and passing the formulation through hypodermic needle with lower applied pressure. Different mechanisms such as physical or physiological stimuli and cross linking reactions are involved in the gelling of in situ forming systems at the site of injection. Drug release from in situ forming systems can be altered according to the need by using different polymers, lipids and fatty acids. In situ forming systems can be evaluated by sol-gel transition time, temperature and pH, rheology, gel strength, texture analysis, syringeability and injectability. The present paper is an overview of the various in situ gelling polymers and their application in the preparation of depot formulations. Numerous products based on in situ forming systems such as Eligard®, Atridox® are available in market.

Ключевые слова: controlled release, PLGA, NMP, syringeability, Regel technology

Articles with similar content:

Biodegradable Microspheres for Parenteral Delivery
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.22, 2005, issue 6
Vivek Ranjan Sinha, A. Trehan
Stimuli-Responsive Systems with Diverse Drug Delivery and Biomedical Applications: Recent Updates and Mechanistic Pathways
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.34, 2017, issue 3
Ranjot Kaur, Sumant Saini, Bhupinder Singh, Rajneet Kaur Khurana, Babita Garg
Modeling of Drug Release from Polymeric Delivery Systems—A Review
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.21, 2004, issue 5
Stephanie T. Lopina, Deenu G. Kanjickal
Approaches to Oral Drug Delivery for Challenging Molecules
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.23, 2006, issue 2
Steven M. Dinh, Gabriela Mustata
In Situ Gelling Polymers in Ocular Drug Delivery Systems: A Review
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.26, 2009, issue 1
Jasmine G. Avari, Atish S. Mundada