Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Journal of Automation and Information Sciences
SJR: 0.275 SNIP: 0.59 CiteScore™: 0.8

ISSN Печать: 1064-2315
ISSN Онлайн: 2163-9337

Том 52, 2020 Том 51, 2019 Том 50, 2018 Том 49, 2017 Том 48, 2016 Том 47, 2015 Том 46, 2014 Том 45, 2013 Том 44, 2012 Том 43, 2011 Том 42, 2010 Том 41, 2009 Том 40, 2008 Том 39, 2007 Том 38, 2006 Том 37, 2005 Том 36, 2004 Том 35, 2003 Том 34, 2002 Том 33, 2001 Том 32, 2000 Том 31, 1999 Том 30, 1998 Том 29, 1997 Том 28, 1996

Journal of Automation and Information Sciences

DOI: 10.1615/JAutomatInfScien.v51.i11.10
pages 1-13

Generation of Magnetic Hydrodynamic Waves in a Simplified Model of Earth's Magnetosphere Tail

Yuriy P. Ladikov-Royev
Institute of Space Research of National Academy of Sciences of Ukraine and State Space Agency of Ukraine, Kiev, Ukraine
Alexey A. Loginov
Institute of Space Research of National Academy of Sciences of Ukraine and National Space Agency of Ukraine, Ukraine
Vladimir E. Nabivach
Institute of Space Research of National Academy of Sciences of Ukraine and State Space Agency of Ukraine, Kiev

Краткое описание

The main attention is paid to the construction of a mathematical model and the description of methods for studying magnetic hydrodynamic (MHD) waves propagating in the "tail" of the Earth magnetic field. These waves, in contrast to MHD waves propagating near the closed part of the Earth magnetic field, have been little studied. The complexity of the description of these waves is associated with the configuration of the magnetic field inside the plasma layer of the magnetosphere "tail". We consider the system "flat plasma layer − an external moving plasma", which allows the obtaining of analytical results in a complete form. For the model of a "flat" plasma layer, equations of small oscillations are obtained both inside the layer and outside it. Using the theory of singularities of differentiable mappings (catastrophe theory), the question of stability of their existence is considered. The dispersion equation for perturbations of the magnetic field is found, which takes into account the compressibility of the plasma medium. Using this equation, the problem of the propagation of MHD waves inside and outside the plasma layer in the solar wind is analyzed. It was ascertained that in the plasma layer (analog of the magnetosphere) stable waves can be present, which are not connected with the surrounding solar wind. In the flow (the solar wind) surrounding the plasma layer, excitations that are associated with disturbances inside the geomagnetic tail do not occur. This can be explained by the sparseness and huge speed of the solar wind. Thus, the magnetic storms that arise due to the considered perturbations in the Earth atmosphere owe their origin to coronary ejections of the mass of the Sun.


  1. Zelenyi L.M., Veselovskiy I.S., Plasma heliogeophysics [in Russian], Fizmatlit, Moscow, 2008, 2. .

  2. Burinskaya T.M., Kelvin-Helmholtz instability for plasma flow, bounded in space, Fizika plazmy, 2008, 14, No. 11, 1013-1020, DOI: 10.1134/S1063780X0811007X. .

  3. Cheremnykh O., Cheremnykh S., Kozak L., Kronberg E., Magnetohydrodynamic waves and the Kelvin-Helmholtz instability at the boundary of plasma mediums, Physics of Plasma, 2018, 25, No. 10, 102-119, .DOI: 10.1063/1.5048913. .

  4. Landau L.D., Stability of tangential gaps in a compressible medium, Doklady AN SSSR, 1944, No. 44, 339-342. .

  5. Mishin V.V., Tomozov V.M., Kelvin-Helmholtz instability in the solar atmosphere, solar wind and geomagnetosphere, Solar Physics, 2016, 291, No. 11, 3165-3184, DOI: 10.1007/s11207-016-0891-4. .

  6. Zelenyi L.M., Grigorenko E.E., Fedorov A.O., Spatial-time ionic structures in a tail of the Earth magnetosphere: beamlets as the result of non-adiabatic pulsed plasma acceleration, Pisma v ZhETF, 2004, 80, No. 10, 771-783. .

  7. Grigorenko E.E., Sauvaud J.-A., Zelenyi L.M., Spatial-temporal characteristics of ion beamlets in plasma sheet boundary layer of magnetotail, J. Geophys. Res., 2007, No. 112, 1-21, https://agupubs. onlinelibrary. wiley. com/doi/pdf/10.1029/2006JA011986. .

  8. Fridman A.M., Prediction and discovery of extremely strong hydrodynamic instabilities due to a velocity jump: theory and experiments, Physics-Uspekhi, 2008, 51, No. 3, 213. DOI: 10.1070/ PU2008v051n03ABEH006470 .

  9. Shevelev M.M., Burinskaya T.M., Kelvin-Helmholtz instability for cylindrical plasma flow with arbitrary temperature, Fizikaplazmy, 2011, 37, 1081-1095, DOI: 10.1134/S1063780X11110080. .

  10. Hwang K.-J., Magnetopause waves controlling the dynamics of Earth's magnetosphere, J. Astron. Space Sci., 2015, 32, No. 1, 1-11, DOI: 10.5140/JASS.2015.32.1.1. .

  11. Leonovich A.S., Mazur V.A., Kozlov D.A., MHD waves in geomagnetic tail: survey, Solnechno-Zemnaya fizika, 2015, 1, No. 1, 4-42. .

  12. Leonovich A.S., Mazur V.A., Senatorov V.N., Alfven waveguide, ZhETF, 1983, 85, No. 1(7), 141-145. .

  13. Agapitov A.V., Cheremnykh O.K., Natural oscillations of the Earth magnetosphere associated with solar wind sudden impulses, Ukrainian Journal of Physics, 2008, 53, No. 5, 506-510. .

  14. Burdo O.S., Cheremnykh O.K., Verkhoglyadova O.P., Study of ballooning modes in the inner magnetosphere of the Earth, Izv. Akad. Nauk. Fiz., 2000, 64, No. 9, 1896-1900. .

  15. Cheremnykh O.K., Transversally small-scale perturbations in arbitrary plasma configurations with magnetic surfaces, Plasma Phys. and Contr. Fusion, 2010, 52, No. 9, 1-6, DOI: 10.1088/0741-3335/ 52/9/095006. .

  16. Cheremnykh O.K., Danilova V.V., Transverse small-scale MHD disturbances in space plasma with magnetic surfaces, Kinematics and Physics of Celestial Bodies, 2011, 27, No. 2, 98-108, DOI: 10.3103/S0884591311020036. .

  17. Dai L., Takahashi K., Lysak R. et al., Storm time occurrence and spatial distribution of Pc4 poloidal ULF waves in the inner magnetosphere: a van alien probes statistical study, J. Geophys. Res., 2015, 120, 4748-4762, DOI: 10.1002/2015JA021134. .

  18. Axford W.I., Viscous interaction between the solar wind and Earth's magnetosphere, Planet. Space Sci., 1964, 12, 45-51, DOI: 10.1016/0032-0633(64)90067-4. .

  19. 19. Zagorodniy A.G., Cheremnykh O.K., Introduction to plasma physics [in Russian], Naukova dumka, Kiev, 2014. .

  20. Ladikov-Royev Yu.P., Cheremnykh O.K., Mathematical models of continuum media [in Russian], Naukova dumka, Kiev, 2010. .

  21. Kremenetskiy I.A., Cheremnykh O.K., Space weather: mechanisms and manifestations [in Russian], Naukova dumka, Kiev, 2009. .

  22. Poston T., Steward I., Theory of catastrophes and its applications [Russian translation], Mir, Moscow, 1980. .

  23. Ladikov-Royev Yu.P., Nabivach V.E., Waves excitation in rotating plasma magnetized cylinder surrounded by plasma atmosphere with considering compressibility, Mezhdunarodnyi nauchno-tekhnicheskiy zhurnal "Problemy upravleniya i informatiki", 2018, No. 6, 25-40. .

  24. Nabivach V.E., Theory of catastrophes and peculiarities of roots of characterstic equations, Avtomatika-2013, Nikolayev, 58-59. .

  25. Nabivach V., Root distribution of characteristic equations up to fourth order, Soviet Journal of Automation and Information Sciences, 1985, 17, No. 6, 12-15. .

  26. Nabivach V.E., Theory of catastrophes and risk management: conceptual principles, Mezhdunarodnyi nauchno-tekhnicheskiy zhurnal "Problemy upravleniya i informatiki", 2013, No. 3, 16-26. .

Articles with similar content:

Modeling of Wave Regimes and Control Parameters at Body Motion under the Water
Journal of Automation and Information Sciences, Vol.47, 2015, issue 2
Iurii G. Kryvonos, Olga V. Avramenko, Igor T. Selezov
Optimization Approach to Space Weather Prediction
Journal of Automation and Information Sciences, Vol.40, 2008, issue 8
Yuliya V. Shatokhina, Oleg K. Cheremnykh, Vladimir I. Sidorenko, Vitaliy A. Yatsenko, Oleg V. Semeniv
International Heat Transfer Conference 4, Vol.6, 1970, issue
Curtis A. Rhodes
TsAGI Science Journal, Vol.45, 2014, issue 6
Valentina Vasilyevna Laricheva
To Magnetohydrodynamics of Rotating Nonhomogeneous Fluid in Stationary Case
International Journal of Fluid Mechanics Research, Vol.28, 2001, issue 3
V. N. Saltanov, N. V. Saltanov