Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Journal of Automation and Information Sciences
SJR: 0.232 SNIP: 0.464 CiteScore™: 0.27

ISSN Печать: 1064-2315
ISSN Онлайн: 2163-9337

Выпуски:
Том 52, 2020 Том 51, 2019 Том 50, 2018 Том 49, 2017 Том 48, 2016 Том 47, 2015 Том 46, 2014 Том 45, 2013 Том 44, 2012 Том 43, 2011 Том 42, 2010 Том 41, 2009 Том 40, 2008 Том 39, 2007 Том 38, 2006 Том 37, 2005 Том 36, 2004 Том 35, 2003 Том 34, 2002 Том 33, 2001 Том 32, 2000 Том 31, 1999 Том 30, 1998 Том 29, 1997 Том 28, 1996

Journal of Automation and Information Sciences

DOI: 10.1615/JAutomatInfScien.v45.i9.10
pages 1-12

Robust Multiobjective Identification of Nonlinear Objects Based on Evolving Radial Basis Networks

Oleg G. Rudenko
Kharkov National University of Radio and Electronics, Kharkov
Alexander A. Bezsonov
Kharkov National University of Radio and Electronics, Kharkov

Краткое описание

The problem of multiobjective neural network-based identification of nonlinear objects by evolving radial basis network is considered. Networks structure selection and adaptation is performed using a genetic algorithm. Robust fitness functions are used to eliminate non-Gaussian noise. Robust information criteria are utilized for selection of the optimal model from the Pareto front. The simulation results confirm the effectiveness of the proposed approach.