Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
International Journal of Energetic Materials and Chemical Propulsion
ESCI SJR: 0.149 SNIP: 0.16 CiteScore™: 0.29

ISSN Печать: 2150-766X
ISSN Онлайн: 2150-7678

International Journal of Energetic Materials and Chemical Propulsion

DOI: 10.1615/IntJEnergeticMaterialsChemProp.v5.i1-6.720
pages 699-711

PREDICTION OF HYBRID FUEL REGRESSION RATE IN CONFINED TURBULENT BOUNDARY LAYER COMBUSTION

H. Y. Wang
Laboratoire de Combustion et de Détonique C.N.R.S. UPR 9028 -E.N.S.M.A., Université de Poitiers, BP 109 - Site du Futuroscope 86960, Futuroscope Cedex, France
Jean-Michel Most
Laboratoire de Combustion et de Déltonique, UPR 9028 au CNRS-ENSMA, BP 40109, F-86961 Futuroscope, Cedex, France
P. Simon
ONERA, DEFA, Centre de Palaiseau, Chemin de la Hunière, 91761 Palaiseau Cedex, France
G. Lengelle
Energetics Department, ONERA National Laboratory for Aerospace Research and Development of France

Краткое описание

An efficient parabolized numerical procedure is developed for calculating a highly confined, chemically reacting turbulent flow. The conservation equations of mass, momentum, energy, and species concentration, together with the strong coupling of heat and mass transfers at the solid burning surface are numerically solved using a finite volume method. The standard k−ε turbulence model is used, and turbulence closure is achieved using a two-layer model that takes into account the wall-injection effect arising from the burning surface. Interaction between turbulence and combustion is modeled by Eddy-Dissipation Concept with fast chemistry. A two-dimensional adaptation of the Discrete Ordinates Method is used for estimating the flame radiation energy to the burning wall. The influence of various parameters (crossflow mass flux, radiation, oxygen concentration and confinement) on the regression rate, the flow velocity and the temperature was investigated. The predicted regression rate is in relatively good agreement with the available experimental data, and is a function of the crossflow mass flux raised to the nth power with n=0.681 for the confined flow.


Articles with similar content:

NUMERICAL INVESTIGATION OF RADIATION AND TURBULENCE INTERACTIONS IN SUPERSONICALLY EXPANDING HYDROGEN -AIR JET
ICHMT DIGITAL LIBRARY ONLINE, Vol.7, 1995, issue
T. O. Mohieldin, R. Chandrasekhar, S. N. Tiwari
NUMERICAL SIMULATION OF IMPINGING JET HEAT TRANSFER IN THE PRESENCE OF CROSSFLOW
ICHMT DIGITAL LIBRARY ONLINE, Vol.4, 2001, issue
Bengt Sunden, Andreas Abdon
Investigation of Radiative Heat Transfer and Three Thermal Radiation Models in a Turbulent Non-Premixed Methane/Air Flame
Heat Transfer Research, Vol.42, 2011, issue 6
Farzad Bazdidi-Tehrani, hamed zeinivand
MODELING OF A TURBULENT ETHYLENE/AIR JET FLAME USING HYBRID FINITE VOLUME/MONTE CARLO METHODS
ICHMT DIGITAL LIBRARY ONLINE, Vol.13, 2008, issue
Anquan Wang, Ranjan S. Mehta
MODELING OF A TURBULENT ETHYLENE/AIR JET FLAME USING HYBRID FINITE VOLUME/MONTE CARLO METHODS
Computational Thermal Sciences: An International Journal, Vol.1, 2009, issue 1
Daniel C. Haworth, Michael F. Modest, Anquan Wang, Ranjan S. Mehta