Доступ предоставлен для: Guest
International Journal of Energetic Materials and Chemical Propulsion

Выходит 6 номеров в год

ISSN Печать: 2150-766X

ISSN Онлайн: 2150-7678

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 0.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 0.7 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.1 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00016 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.18 SJR: 0.313 SNIP: 0.6 CiteScore™:: 1.6 H-Index: 16

Indexed in

PROPERTIES OF ADN PROPELLANTS

Том 5, Выпуск 1-6, 2002, pp. 492-501
DOI: 10.1615/IntJEnergeticMaterialsChemProp.v5.i1-6.530
Get accessGet access

Краткое описание

Investigators at the Naval Air Warfare Center Weapons Division (NAWCWD), China Lake, Calif., have made two series of minimum-signature propellants formulated with either ammonium dinitramide (ADN) or a combination of ADN and hexanitrohexazaisowurtzitane (CL-20). Poly(diethyleneglycol-4,8-dinitraza undeconate) (ORP-2A)/nitrate ester (NE) and polycaprolactone polymer (PCP)/NE were used as the binders. These binders have shown to be excellent for propellant applications. Four propellants are currently under study—PCP/NE/ADN, PCP/NE/ADN/ CL-20, ORP-2A/NE/ADN, and ORP-2A/NE/ADN/CL-20. These propellants processed and cured well and, therefore, produced void-free samples. Propellant samples were prepared for burning rate evaluation in a window bomb apparatus. The results showed that CL-20/ADN propellants can sustain good burning rates at pressures up to 8000 psia. ADN/CL-20 propellants exhibited a bum rate around 1.7 to 2.1 cm/s at 6.89 MPa. In addition, propellants made with ADN as the sole oxidizer exhibited similar burning rates. Finally, the investigators compared the burning rates of propellant made with ADN prills versus those of propellant made with neat ADN solid. Energetic compositions containing ADN and exploded aluminum (ALEX), as well as the conventional H-5 spherical atomized powder, have been prepared with a polyalkylene oxide (PAO) polyether and a nitrate ester plasticizer. Compositions having fine recrystallized ADN (partially soluble in the melted PAO), ALEX, and H-5 aluminum were processible and gave well-cured composites. Microcinematography of burning samples revealed some agglomeration with a mixture of ALEX and H-5. The samples burning rates were determined using the window bomb technique; in addition, other safety and thermal properties were also measured.

Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции Цены и условия подписки Begell House Контакты Language English 中文 Русский Português German French Spain