Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
International Journal of Energetic Materials and Chemical Propulsion
ESCI SJR: 0.149 SNIP: 0.16 CiteScore™: 0.29

ISSN Печать: 2150-766X
ISSN Онлайн: 2150-7678

International Journal of Energetic Materials and Chemical Propulsion

DOI: 10.1615/IntJEnergeticMaterialsChemProp.v5.i1-6.240
pages 226-235

COMBUSTION OF SOLID PROPELLANT SANDWICHES: EFFECT OF BINDER OXYGENATION AND FINITE PECLET NUMBER

M. Quinn Brewster
University of Utah, University of Illinois at Urbana-Champaign, Department of Mechanical and Industrial Engineering, 140 Mechanical Engineering Building, MC-244, 1206 West Green Street, Urbana-Champaign, IL 61801, USA
B. T. Chorpening
Department of Mechanical and Industrial Engineering, University of Illinois, Urbana, IL 61801 USA

Краткое описание

The combustion of AP/HTPB solid propellant sandwiches is investigated experimentally using ultraviolet (310±5 nm) chemiluminescent emission imaging and theoretically using Shvab-Zeldovich theory with finite Peclet number (Pe). Experimentally a thin binder lamina (50−300 μm) is sandwiched between two thick (∼ 1.5 mm) pressed AP layers, forming two AP/binder interfaces. Both pure and oxygenated binders (loaded with fine AP) are considered. Variations in Peclet number and stoichiometry are achieved through varying binder thickness and fine-AP loading. Both experimental and theoretical results show that fine-AP loading has a pronounced effect on the UV-active diffusion flame structure. For the same approximate binder thickness and Pe, adding fine-AP to the binder causes the observed flame intensity and height to decrease and the leading edge of the diffusion flame to shift from the AP region toward the AP/binder interface, in accordance with Shvab-Zeldovich mixing theory. Peclet number also affects diffusion flame structure in a predictable manner for both pure and oxygenated binders: increasing Pe increases the size and intensity of the UV-active diffusion flame.


Articles with similar content:

DIAGNOSTIC TOOLS FOR STUDIES ON BURN-RATE BEHAVIOR OF ADVANCED SOLID PROPELLANTS
International Journal of Energetic Materials and Chemical Propulsion, Vol.3, 1994, issue 1-6
A. N. Nazare, S. S. Dhar, Haridwar Singh, S. N. Asthana, P. G. Shrotri
LOCAL HEAT/MASS TRANSFER CHARACTERISTICS IN THE BOUNDARY LAYER OF A WAVY SURFACE
International Heat Transfer Conference 13, Vol.0, 2006, issue
J.-H. Park, S.-Y. Yoo, Hwa-Kil Kwon
SPECTRAL ENERGY DISTRIBUTION SIMULATIONS FOR SUBSTARS WITH GAPLESS DISKS
Radio Physics and Radio Astronomy, Vol.2, 2011, issue 2
O. V. Zakhozhay
SICOMIN-ROT K 3130 S AS A BURNING RATE MODIFIER
International Journal of Energetic Materials and Chemical Propulsion, Vol.5, 2002, issue 1-6
D. D. Blagojevic, Vladica Bozic
DETERMINATION OF TEMPERATURE AND OH CONCENTRATION PROFILES OF RDX/CAB PSEUDO PROPELLANTS USING UV/VISIBLE ABSORPTION SPECTROSCOPY
International Journal of Energetic Materials and Chemical Propulsion, Vol.4, 1997, issue 1-6
Yeu-Cherng Lu, Abdullah Ulas