Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
International Journal of Energetic Materials and Chemical Propulsion
ESCI SJR: 0.28 SNIP: 0.421 CiteScore™: 0.9

ISSN Печать: 2150-766X
ISSN Онлайн: 2150-7678

Выпуски:
Том 19, 2020 Том 18, 2019 Том 17, 2018 Том 16, 2017 Том 15, 2016 Том 14, 2015 Том 13, 2014 Том 12, 2013 Том 11, 2012 Том 10, 2011 Том 9, 2010 Том 8, 2009 Том 7, 2008 Том 6, 2007 Том 5, 2002 Том 4, 1997 Том 3, 1994 Том 2, 1993 Том 1, 1991

International Journal of Energetic Materials and Chemical Propulsion

DOI: 10.1615/IntJEnergeticMaterialsChemProp.2014010649
pages 471-477

CURE KINETICS OF POLY NITRATOMETHYL OXETANE WITH DIFFERENT ISOCYANATES STUDIED BY DIFFERENTIAL SCANNING CALORIMETRY

Kavita Ghosh
High Energy Materials Research Laboratory, Sutarwadi, Pune, India
Suman Pawar
High Energy Materials Research Laboratory, Sutarwadi, Pune, India
Arvind Kumar
Dept. of Mechanical Engineering, Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh, 208016, India
Arunkanti Sikder
High Energy Materials Research Laboratory, Sutarwadi, Pune, India
Manoj Gupta
High Energy Materials Research Laboratory, Sutarwadi, Pune, India

Краткое описание

This paper reports cure kinetics of poly nitratomethyl oxetane (PLN) with different isocyanates like isophorane di-isocyanate (IPDI) and hexamethylene di-isocyanate (HMDI). Reactions were monitored by differential scanning calorimetry (DSC) in the presence of two different cure catalysts namely di butyl tin di laurate (DBTDL) and ferric tris acetyl acetonate (FeAA) and their effect on the cure reaction was studied. Cure kinetics was evaluated using the multiple heating rate Ozawa method. The reactivity of two isocyanates and catalytic efficiencies were determined based on DSC reaction temperature, activation energy, and rate constants. Based on cure temperatures, FeAA catalyzed reactions have lower cure temperature than DBTDL catalyzed reactions, inferring that FeAA is a more active catalyst for PLN cure reactions. Rate constants (k) of FeAA catalyzed PLN cure reactions were higher than of DBTDL catalyzed reactions. The values of activation energies (Ea), pre-exponential factor, and rate constant also support the same trend. Completion of the curing process was monitored with the help of Fourier transform infrared. Viscosity buildup was measured with the help of rheometer by taking curing profiles for each system at 30° C and it followed the similar trend as determined by DSC.

Ключевые слова: cure kinetics, catalyst, isocyanates, PLN

Articles with similar content:

COMBUSTION AND IGNITION PROPERTIES OF AMMONIUM NITRATE AND ACTIVATED CARBON MIXTURES
International Journal of Energetic Materials and Chemical Propulsion, Vol.8, 2009, issue 5
Atsumi Miyake, Hidefumi Kobayashi, Terushige Ogawa, Hiroshi Echigoya
COST REDUCTION AND PERFORMANCE IMPROVEMENT OF LOW MELTING POINT MOLTEN SALTS FOR HIGH TEMPERATURE HEAT TRANSFER AND STORAGE
Second Thermal and Fluids Engineering Conference, Vol.22, 2017, issue
Xia Chen, Yuting Wu, Yuanwei Lu, Chong Fang Ma
ANALYSIS OF THERMOPLASTIC PROPELLANTS AND THEIR INGREDIENTS WITH DSC AND TGA
International Journal of Energetic Materials and Chemical Propulsion, Vol.8, 2009, issue 2
Ivan Krakovsky, Marko V. Milos, Vladica S. Bozic
THE PERFORMANCE INVESTIGATION OF HYDROPHILIC MATERIALS MODIFIED LiOH·H2O BASED COMPOSITE THERMOCHEMICAL MATERIALS FOR LOW TEMPERATURE THERMAL ENERGY STORAGE
International Heat Transfer Conference 16, Vol.5, 2018, issue
Shijie Li, Jun Li , Huhetaoli, Hongyu Huang , Noriyuki Kobayashi, Zhaohong He, Yu Bai
FERRITE: POTENTIAL NANO-MODIFIER FOR ROCKET PROPELLANTS
International Journal of Energetic Materials and Chemical Propulsion, Vol.16, 2017, issue 4
Pragnesh N. Dave, Shalini Chaturvedi, Pravin N. Ram