Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Telecommunications and Radio Engineering
SJR: 0.203 SNIP: 0.44 CiteScore™: 1

ISSN Печать: 0040-2508
ISSN Онлайн: 1943-6009

Выпуски:
Том 79, 2020 Том 78, 2019 Том 77, 2018 Том 76, 2017 Том 75, 2016 Том 74, 2015 Том 73, 2014 Том 72, 2013 Том 71, 2012 Том 70, 2011 Том 69, 2010 Том 68, 2009 Том 67, 2008 Том 66, 2007 Том 65, 2006 Том 64, 2005 Том 63, 2005 Том 62, 2004 Том 61, 2004 Том 60, 2003 Том 59, 2003 Том 58, 2002 Том 57, 2002 Том 56, 2001 Том 55, 2001 Том 54, 2000 Том 53, 1999 Том 52, 1998 Том 51, 1997

Telecommunications and Radio Engineering

DOI: 10.1615/TelecomRadEng.v69.i19.10
pages 1681-1702

A METHOD FOR AUTOMATIC BLIND ESTIMATION OF ADDITIVE NOISE VARIANCE IN DIGITAL IMAGES

V. V. Lukin
National Aerospace University (Kharkiv Aviation Institute), 17 Chkalov St., Kharkiv, 61070, Ukraine
S. K. Abramov
Department of Transmitters, Receivers and Signal Processing, National Aerospace University (Kharkiv Aviation Institute), 17 Chkalov St., Kharkiv, 61070, Ukraine
A. V. Popov
National Aerospace University (Kharkov Aviation Institute), Kharkiv, Ukraine
P. Ye. Eltsov
National Aerospace University (Kharkov Aviation Institute), Kharkiv, Ukraine
Benoit Vozel
University of Rennes 1, Enssat, Lannion, 22300, France
Kacem Chehdi
University of Rennes I, 6, Rue de Kerampont, 22 305 Lannion cedex, BP 80518, France

Краткое описание

An automatic method for blind evaluation of additive noise in digital image based on image pre-segmentation, Gaussianity test, and minimal inter-quantile processing of a set of local variance estimates in blocks is proposed. The purposes all aforementioned operations are applied for are discussed. Their joint use allows removing abnormal local estimates that can arise due to image content heterogeneity in blocks and clipping effects that may occur due to several reasons. The proposed method is tested for components of color images in TID2008 database and it is shown to perform accurately enough for most of them.


Articles with similar content:

AUTOMATIC ESTIMATION OF SPATIALLY CORRELATED NOISE VARIANCE IN SPECTRAL DOMAIN FOR IMAGES
Telecommunications and Radio Engineering, Vol.73, 2014, issue 6
Benoit Vozel, V. V. Lukin, S. K. Abramov, A. A. Roenko, V. V. Abramova
OPTIMAL OPERATION POINT IN 3D DCT- BASED LOSSY COMPRESSION OF COLOR AND MULTICHANNEL REMOTE SENSING IMAGES
Telecommunications and Radio Engineering, Vol.74, 2015, issue 20
Benoit Vozel, V. V. Lukin, S. K. Abramov, R.A. Kozhemiakin, I. Djurovic, B. Djurovic
USE OF SIMILARITY METRICS IN TEMPLATE-BASED DETECTION OF OBJECTS IN IMAGES
Telecommunications and Radio Engineering, Vol.78, 2019, issue 14
O. Rubel, V. V. Lukin, S. K. Abramov, V. V. Abramova
Characteristics of Mathematical Modelling for the Internet of Things System
Journal of Automation and Information Sciences, Vol.52, 2020, issue 1
Victoriya V. Onyshchenko , Elena V. Nehodenko
Removal of Mixed Poisson and Impulse Noise in 1-D Signals by Non-Adaptive and Adaptive Nonlinear Filters
Telecommunications and Radio Engineering, Vol.67, 2008, issue 14
A. N. Besedin, S. K. Abramov, S. Peltonen, P. Ye. Yeltsov