Доступ предоставлен для: Guest
Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции
Telecommunications and Radio Engineering
SJR: 0.203 SNIP: 0.44 CiteScore™: 1

ISSN Печать: 0040-2508
ISSN Онлайн: 1943-6009

Выпуски:
Том 79, 2020 Том 78, 2019 Том 77, 2018 Том 76, 2017 Том 75, 2016 Том 74, 2015 Том 73, 2014 Том 72, 2013 Том 71, 2012 Том 70, 2011 Том 69, 2010 Том 68, 2009 Том 67, 2008 Том 66, 2007 Том 65, 2006 Том 64, 2005 Том 63, 2005 Том 62, 2004 Том 61, 2004 Том 60, 2003 Том 59, 2003 Том 58, 2002 Том 57, 2002 Том 56, 2001 Том 55, 2001 Том 54, 2000 Том 53, 1999 Том 52, 1998 Том 51, 1997

Telecommunications and Radio Engineering

DOI: 10.1615/TelecomRadEng.v77.i3.40
pages 225-241

PRE-REQUISITES FOR SMART LOSSY COMPRESSION OF NOISY REMOTE SENSING IMAGES

M. Alhihi
Philadelphia University, Amman, 19392, Jordan
A. Zemliachenko
National Aerospace University (Kharkiv Aviation Institute), 17 Chkalov St., Kharkiv, 61070, Ukraine
S. K. Abramov
Department of Transmitters, Receivers and Signal Processing, National Aerospace University (Kharkiv Aviation Institute), 17 Chkalov St., Kharkiv, 61070, Ukraine
Benoit Vozel
University of Rennes 1, Enssat, Lannion, 22300, France
Karen O. Egiazarian
Tampere University, Department of Signal Processing, P. O. Box 553, FIN-33101, Tampere, Finland
V. V. Lukin
National Aerospace University (Kharkiv Aviation Institute), 17 Chkalov St., Kharkiv, 61070, Ukraine

Краткое описание

Remote sensing images are usually subject to compression for their further transmission, storage and dissemination. Because of lossy nature of compression, resulting images appear distorted. Degradations of image quality due to compression depend on noisy input image, a type and intensity of noise, and used image coder. To control image degradations, for a given coder, one should predict compression performance to be able to properly choose coder parameter(s). In this paper, we present pre-requisites for such a controlled lossy compression of noisy remote sensing images. The main attention is paid to image coders which are based on discrete cosine transform, due to relatively simple adaptation of its main parameter, quantization step, for controlling the effect of compression.


Articles with similar content:

THE METHOD OF CRYPTOCOMPRESSION PRESENTATION OF VIDEOINFORMATION RESOURCES IN A GENERALIZED STRUCTURALLY POSITIONED SPACE
Telecommunications and Radio Engineering, Vol.76, 2017, issue 6
V. V. Barannik, A. N. Alimpiev, S. A. Sidchenko
OPTIMAL OPERATION POINT IN 3D DCT- BASED LOSSY COMPRESSION OF COLOR AND MULTICHANNEL REMOTE SENSING IMAGES
Telecommunications and Radio Engineering, Vol.74, 2015, issue 20
Benoit Vozel, V. V. Lukin, S. K. Abramov, R.A. Kozhemiakin, I. Djurovic, B. Djurovic
BLIND ESTIMATION OF NOISE VARIANCE FOR 1D SIGNAL DENOISING
Telecommunications and Radio Engineering, Vol.79, 2020, issue 7
A. Kharkov, V. V. Lukin, V. Oliinyk, S. S. Krivenko
SMART LOSSY COMPRESSION OF IMAGES BASED ON DISTORTION PREDICTION
Telecommunications and Radio Engineering, Vol.77, 2018, issue 17
O. Krylova, E. Bataeva, V. V. Lukin, S. S. Krivenko
DENOISING OF MULTICHANNEL IMAGES WITH NONLINEAR TRANSFORMATION OF REFERENCE IMAGE
Telecommunications and Radio Engineering, Vol.77, 2018, issue 9
V. V. Lukin, S. K. Abramov, Karen O. Egiazarian, V. V. Abramova